Academic Calendar: 2021-22 (Even Semester)

Department: Physics

Semester/ Year	Syllabus Module/Unit	No of Lectures	Name of Teacher	Distribution
II PHSGCOR02T (Electricity and Magnetism)	Vector Analysis Review of vector algebra (Scalar and Vector product), gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss- divergence theorem and Stoke's theorem of vectors (statement only).		PPP	January (2022)
	Electrostatics Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field. Electric potential due to an electric dipole. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric.	18	PPP	January- February (2022)
	Magnetism			
	Magnetostatics: Biot-Savart's law & its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para- and ferro-magnetic materials.	10	PPP	February (2022)

Electromagnetic Induction			
Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field.	06	PPP	March (2022)
Linear Network			
Impedance of L, C, R and their combinations. Thevenin & Norton's Theorem. Maximum power transfer theorem and superposition theorem. Anderson's bridge.	05	РРР	March (2022)
Maxwell's Equations and Electromagnetic Wave Propagation			
Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization.	09	РРР	April (2022)
General topic			
Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances (e) Checking electrical fuses and (f) circuit continuity check. Demonstration on Carey Foster's bridge, potentiometer, resistance box, inductor coil, moving coil galvanometer (in dead beat and ballistic mode) etc.	10 Hours	РРР	April-May (2022)
List of Practicals			
1. To determine an unknown Low Resistance using Carey Foster's Bridge.	5 Hours		
2. To verify the Thevenin and Norton theorems.	5 Hours	PPP	May-June (2022)
3. To verify the Superposition and Maximum power transfer theorems.	5 Hours		
4. To determine self-inductance of a coil by	5		

	Anderson's bridge.	Hours		
	5. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width.	5 Hours		
	6. To study the response curve of a parallel LCR cir cuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q.	5 Hours	חתח	
	7. To study the characteristics of a series RC Circuit.	5 Hours	III	
	8. To determine an unknown Low Resistance using Potentiometer.	5 Hours		
	9. To determine the resistance of a galvanometer using Thomson's method.	5 Hours	РРР	
	10. Measurement of field strength B and its variation in a solenoid (determine dB/dx)	5 Hours		
IV	Superposition of Two Collinear Harmonic oscillations			
PHSGCOR04T - (Waves and Optics)	Linearity & Superposition Principle. (1) Oscillations having equal frequencies and (2) Oscillations having different frequencies (Beats).	04	PPP	January- 2022
	Superposition of Two Perpendicular Harmonic Oscillations			
	Graphical and Analytical Methods. Lissajous Figures with equal an unequal frequency and their uses.	02	PPP	January- 2022

Waves Motion- General			
Transverse waves on a string. Travelling and standing waves on a string. Normal Modes of a string. Group velocity, Phase velocity. Plane waves. Spherical waves, Wave intensity.	07	PPP	January- 2022
Fluids			
Surface Tension: Synclastic and anticlastic surface - Excess of pressure - Application to spherical and cylindrical drops and bubbles - variation of surface tension with temperature. Viscosity: Viscosity - Rate flow of liquid in a capillary tube - Poiseuille's formula - Determination of coefficient of viscosity of a liquid - Variations of viscosity of a liquid with temperature lubrication. Qualitative discussion on water waves.	06	PPP	January- 2022
Sound			
Simple harmonic motion - forced vibrations and resonance - Fourier's Theorem - Application to saw tooth wave and square wave - Intensity and loudness of sound - Decibels - Intensity levels - musical notes — musical scale. Acoustics of buildings: Reverberation and time of reverberation - Absorption coefficient — Sabine's formula - measurement of reverberation time. Acoustic aspects of halls and auditoria.	06	РРР	February 2022
Wave Optics			
Electromagnetic nature of light. Definition and Properties of wave front. Huygens Principle.	03	PPP	February 2022
Interference			
Interference: Division of amplitude and division of wavefront. Young's Double Slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge- shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: measurement of wavelength and refractive index.	10	PPP	February 2022

Diffraction	March 2022
Fraunhofer diffraction- Single slit; Double Slit.14PPPMultiple slits and Diffraction grating.FresnelDiffraction: Half-period zones.Zone plate.FresnelDiffraction pattern of a straight edge, a slit and a wire using half-period zone analysis.Image: Single	
PolarizationTransverse nature of light waves. Plane polarized light – production and analysis. Circular and elliptical polarization.05PPP	April 2022
List of PracticalPPP1. To determine the frequency of an electric tuning fork by Melde's experiment and verify $\lambda 2 - T$ law5 Mours2. To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).5 	April 2022 May- 2022

	measuring the width of the interference fringes produced by a wedge-shaped Film.	Hours		June_2022
	9. Familiarization with: Schuster`s focusing; determination of angle of prism.	5 Hours		June-2022
	10. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.	5 Hours		
	11. To investigate the motion of coupled oscillators.	5 Hours		
	12. To determine the wavelength of sodium source using Michelson's interferometer.	5 Hours		
VI	Preliminary Topics			
PHSGDSE04T - (Nuclear and Particle Physics)	Review of mass-energy equivalence, quantum tunnelling. Qualitative discussion on properties of semiconductors.	03	PPP	January (2022)
	General Properties of Nuclei			
	Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.	09	PPP	January (2022)
	Nuclear Models			
	Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual interaction, concept of nuclear force.	11	PPP	January (2022)
	Radioactivity decay			
	(a) Alpha decay: basics of α -decay processes,	10	PPP	February

theory of α - emission, Gamow factor, Geiger Nuttall law, α -decay spectroscopy. (b) beta-decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion.			(2022)
Nuclear Reactions			
Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct reaction, resonance reaction, Coulomb scattering (Rutherford scattering)	08	РРР	February (2022)
Interaction of Nuclear Radiation with matter Energy loss due to ionization (Bethe- Block formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interactionPage 98 with matter.	08	PPP	February (2022)
Detector for Nuclear Radiations Basic principles of ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector	07	РРР	March-2022
Particle Accelerators Linear accelerator, Cyclotron, Synchrotrons. Particle physics	05	РРР	March (2022)

Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quark model, color quantum number and gluons.	14	PPP	April (2022)