Academic Calendar-2021-22 (Odd-Semester)

Department: Physics

IMathematical Methods10PPPJuly-August(PHSGCOR01T - Mechanics)Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter. Ordinary Differential Equations: 1 st order homogeneous differential equations. 2 nd order homogeneous and inhomogeneous differential equations with constant coefficients.10PPPJuly-August 2021Laws of Motion: Frames of reference. Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass. Momentum and Energy: Conservation of energy. Motion of rockets. Rotational Motion: Angular velocity and angular momentum.21PPPSeptemb Octobe 2021	Semester/ Year	Syllabus Module/Unit	No of Lectures	Name of Teacher	Distribution
Particle DynamicsSeptembLaws of Motion: Frames of reference. Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass. Momentum and Energy: Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets. Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum.21PPPSeptemb Octobe 2021	I (PHSGCOR01T - Mechanics)	Mathematical Methods Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter. Ordinary Differential Equations: 1 st order homogeneous differential equations. 2 nd order homogeneous and inhomogeneous differential equations with constant coefficients.	10	PPP	July- August:- 2021
Laws of Motion: Frames of reference. Newton's Laws of motion. Dynamics of a system of 21 PPP Octobe particles. Centre of Mass. Momentum and Energy: Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets. Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum.		Particle Dynamics			
		Laws of Motion: Frames of reference. Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass. Momentum and Energy: Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets. Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum.	21	РРР	September- October: 2021
Gravitation		Gravitation			
Gravitation: Newton's Law of Gravitation. Motion of a particle in a central force field (motion is in a 8 PPP Novemb plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement 2021 only). Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS).		Gravitation Gravitation: Newton's Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS).	8	РРР	November- December: 2021
Oscillations		Oscillations			
Oscillations: Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total 6 PPP Decemb Energy and their time averages. Damped oscillations. Forced harmonic oscillations, resonance.		Oscillations: Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations. Forced harmonic oscillations, resonance.	6	РРР	December- 2021
Elasticity		Elasticity			

	Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson's Ratio- Expression for Poisson's ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire - Twisting couple on a cylinder - Determination of Rigidity modulus by static torsion –Page 78 Torsional pendulum Bending of beam.	8	РРР	December- 2021
	Special Theory of Relativity			
	Special Theory of Relativity: Constancy of speed of light. Postulates of Special Theory of Relativity. Length contraction. Time dilation. Relativistic addition of velocities.	7	РРР	
	Laws of Thermodynamics	22	PPP	September-
(PHSGCOR03T) Thermal Physics and Statistical Mechanics	Thermodynamic Description of system: Zeroth Law of thermodynamics and temperature. First law and internal energy, conversion of heat into work, Various Thermodynamical Processes, Applications of First Law: General Relation between CP and CV, Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Coefficient, Reversible and irreversible processes, Second law and Entropy, Carnot's cycle & theorem, Entropy changes in reversible & irreversible processes, Entropy- temperature diagrams, Third law of thermodynamics, Unattainability of absolute zero.			October:- 2021
	Thermodynamic Potentials	10	DDD	October-
	Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell's relations and applications - Joule-Thompson Effect, Clausius- Clapeyron Equation, Expression for (CP – CV), CP/CV, TdS equations.	10	III	2021
	Kinetic Theory of Gases			
	Derivation of Maxwell's law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no	10	PPP	November- 2021

	derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases. Theory of Radiation Blackbody radiation, Spectral distribution, Concept of Energy Density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh- Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law. Statistical Mechanics Phase space, Macrostate and Microstate, Entropy and Thermodynamic probability, Maxwell- Boltzmann law -	6	PPP	November- 2021
	distribution of velocity - Quantum statistics (qualitative discussion only) - Fermi-Dirac distribution law (statement only) - electron gas as an example of Fermi gas - Bose-Einstein distribution law (statement only) - photon gas as an example of Bose gas- comparison of three statistics.	12	PPP	December -2021
V PHSGDSE02T - (Perspectives of Modern Physics)	Relativistic Dynamics- Brief summary of Lorentz transformation and time dilation, length contraction, velocity addition etc. (no derivation required). Elastic collision between two particles as observed from two inertial frames with relative velocity, idea of relativistic momentum and relativistic mass. Mass-energy equivalence. Quantum Theory of Light- Review on the limitations of classical theory of electromagnetic radiation within a cavity and its solution by Planck's quantum hypothesis (no derivation required). Statement of Planck's law of black body radiation. Photoelectric effect. Einstein's postulate on light as a stream o photons. Compton's scattering and its explanation.	08	РРР	June-July (2020) July-August (2020)
	structure. Bohr's model, its successes and limitations.	04	PPP	July-August (2020)

Wave-Particle Duality- De Broglie's hypothesis – wave particle duality. Davisson-Germer experiment. Connection with Einstein's postulate on photons and with Bohr's quantization postulate for stationary orbits. Heisenberg's uncertainty relation as a consequence of wave-particle duality. Demonstration by γ-ray microscope thought experiment. Estimating minimum energy of a confined particle using uncertainty principle.	06	РРР	August- September (2020)
Wave-function Description- Two slit interference experiment with photons, atoms & particles; linear superposition principle of associated wave functions as a consequence; Departure from matter wave interpretation and probabilistic interpretation of wave function; Schroedinger equation for non-relativistic particles; Momentum and Energy operators; stationary states. Properties of wave function. Probability and probability current densities in one dimension.	07	PPP	September- October (2020)
Stationary State Problems- One Dimensional infinitely rigid box, energy eigenvalues and eigenfunctions, normalization; Quantum dot as an example. Quantum mechanical scattering and tunnelling in one dimension - across a step potential andPage 93 across a rectangular potential barrier (qualitative discussion with statements of end results only). Atomic Physics-	05	РРР	October- November (2020)
Quantization rules energy and orbital angular momentum from Hydrogen and Hydrogen like atoms (no derivation); s, p, d,shells-subshells. Space quantization. Orbital Magnetic Moment and Magnetic Energy of electron, Gyromagnetic Ratio and Bohr magneton. Zeeman effect. Electron Spin as relativistic quantum effect (qualitative discussion only), Spin Angular Momentum. Spin Magnetic Moment. Stern- Gerlach Experiment. Larmor Precession. Spin- orbit interaction. Addition of angular momentum (statement only). Energy correction due to relativistic effect and spin-orbit ineraction (statement only). Fine-structure splitting. Multi-electron atoms. Pauli's Exclusion Principle (statement only). Spectral Notations for atomic	15	РРР	October- November (2020)

States. Aufbau principle, n+l rule (qualitative discussion only). Periodic table.			
X-ray and Crystal Structure of Solids - Generation of X-ray. Mosley's law, explanation from Bohr's theory. Amorphous and crystalline solids. Lattice structure of crystalline (no categorisation required). Unit cell and basis vectors of a lattice. Diffraction of X-ray by			
crystalline solid. Bragg's law. Nuclear Physics	10	PPP	November- December (2020)
Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph. Binding energy curve. Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay, beta decay, gamma emission – basic characteristics. Fission and fusion- mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Basic principle of a nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and basic principle of thermonuclear reactions	15	PPP	December- January (2021)