CBCS/B.Sc./Hons./1st Sem./Chemistry/CEMACOR02T/2019

WEST BENGAL STATE UNIVERSITY B.Sc. Honours 1st Semester Examination, 2019

CEMACOR02T-CHEMISTRY (CC2)

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

Answer any three questions taking one from each unit

UNIT-1

- (a) Plot Maxwell's distribution function for translational kinetic energy of gas 3+4+3+3 molecules at two different temperatures (consider the 3 dimensional case). In the graph, depict the fraction of molecules possessing energies greater than a particular value ε*.
 - (b) Define 'mean free path' of a gas molecule. At ordinary temperature and extremely low pressure, the gas molecules collide far more often with the container wall than with one another. Explain.
 - (c) Binary collision frequency of a gas is 10^{28} cc⁻¹s⁻¹ at NTP. Find the same when *P* is doubled at constant *T*. Does binary collision depend on *T*?
 - (d) Show that the van der Waals equation leads to values of Z < 1 and Z > 1, where Z is the compressibility factor, and identify the conditions for which these values are obtained.
- 2. (a) At a certain temperature, the speed distribution function depends on the nature 3+4+3+3 of the gas but the energy distribution function is the same for all gases. Justify or criticize.
 - (b) The average speed of a particle in an ideal gas is $\langle v \rangle$. Then show that the number of particles striking a unit area of the wall of the container in unit time is equal to $\frac{1}{4} \frac{N}{V} \langle v \rangle$, where $\frac{N}{V}$ is the number of molecules per unit volume.

Given:
$$\int_{0}^{\infty} x e^{-ax^{2}} dx = \frac{1}{2a}.$$

- (c) Calculate the average time between collisions for O₂ at 25°C and 1 atm. The diameter of oxygen molecule is 2.4 Å.
- (d) The virial equation of state in terms of P is given by

$$Z = 1 + \frac{1}{RT} \left(b - \frac{a}{RT} \right) P + \frac{a}{\left(RT \right)^3} \left(2b - \frac{a}{RT} \right) P^2 + \cdots$$

At what temperature does the slope of the Z versus P curve (at P = 0) have a maximum value for the van der Waals gas? What is the value of the maximum slope?

UNIT-2

- 3. (a) Justify or criticize the following: For a fixed change in volume, the reversible adiabatic expansion will produce the greatest drop in temperature than in an irreversible one.
 - (b) Use Euler's chain or the cyclic relation to show that

$$C_V = -\left(\frac{\partial U}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_U$$

- (c) State Kelvin-Planck and Clausius statements of second law of thermodynamics.
- (d) For the following reaction at 25°C, HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(l), ΔH = -57.0 kJ/mol What will be heat released when 100 ml. of 2.0 M NaOH solution reacts with 100 ml. of 2.0 M HCl solution?
- (e) A body of constant heat capacity C_P , and at a temperature T_i is put in contact with a reservoir at a higher temperature T_f . The pressure remains constant while the body comes to equilibrium with the reservoir. Show that the entropy change of the universe is equal to $\Delta S = C_P[x - \ln(1+x)]$, where $x = -(T_f - T_i)/T_f$.
- 4. (a) Derive Kirchoff's equation.

The combustion of nitrogen and oxygen at 27°C occurs according to $2N_2 + O_2 = 2N_2O$. $\Delta H = 39.4$ kcal. What will be the heat of formation at 227°C? Use the relation $C_P = a + bT$. C_P is the molar heat capacity (in cal) at constant pressure.

Ous	u (cai)	$b \times 10^{\circ}$ (in cal)
N ₂	6.52	1.25
O ₂	6.15	3.1
N ₂ O	7.0	7.1

(b) Consider the following cycle using 1 mol of an ideal gas, initially at 25°C and 1 atm pressure.

Step 1. Isothermal expansion against zero pressure to double the volume.

Step 2. Isothermal reversible compression form $\frac{1}{2}$ to 1 atm.

(i) Calculate the value of $\oint \frac{dQ}{T}$.

- (ii) Calculate ΔS for Step 1 and Step 2 respectively.
- (iii) Show that ΔS for Step 1 is not equal to the Q for Step 1 divided by T and comment on this observation.
- (c) Show that Joule-Thomson coefficient can be written as

$$\mu_{\rm JT} = -\frac{1}{C_P} \left\{ \left(\frac{\partial U}{\partial V} \right)_T \left(\frac{\partial V}{\partial P} \right)_T + \left[\frac{\partial (PV)}{\partial P} \right]_T \right\}$$

Hence state under what condition(s) a gas will be cooled by Joule-Thomson expansion.

(2+4)+6+4

UNIT-3

- 5. (a) For a reaction, frequency $A = 4 \times 10^{13} \text{ sec}^{-1}$ and activation energy 3+2+3+3 $E_a = 98.6 \text{ kJmole}^{-1}$. If the reaction is of first order, at what temperature will its half-life be 10 minutes?
 - (b) State the type of reaction in each of the following:
 - (i) Doubling the catalyst concentration doubles the rate of reaction.
 - (ii) Rate does not change with time.
 - (c) Possible mechanism for the reaction $2NO + O_2 \rightarrow 2NO_2$ is the following
 - (i) NO + NO \rightarrow N₂O₂, rate constant k_1
 - (ii) $N_2O_2 \rightarrow 2NO$, rate constant k_2
 - (iii) $N_2O_2 + O_2 \rightarrow 2NO_2$, rate constant k_3 .

Apply steady state approximation to N₂O₂ to obtain the rate law $\frac{d[NO_2]}{k} = \frac{2k_1k_3[NO]^2[O_2]}{k_1 + k_2[O_2]}.$

$$dt \qquad k_2 + k_3[O_2]$$

(d) The addition of KCl will influence the rate constant of the following reaction at a given temperature. — Justify.

$$S_2O_8^{2-} + I^- \rightarrow Product$$

- 6. (a) For the mechanism: (i) A + B ≓ C + D (ii) C → G + H. Step (ii) is the rate determining step. Given activation energies E₁ = 120, E₋₁ = 96 and E₂ = 196 kJ/mole respectively. Find the overall activation energy of the reaction.
 - (b) Draw the following plots with proper labeling of axes (i) concentration of reactant and product vs time for a reversible reaction where $k_1 < k_{-1}$, (ii) $\log k$ vs pH for an acid and base catalysed reaction.
 - (c) Acid hydrolysis of ester is a pseudo first order reaction and the rate constant is given by $k = \frac{1}{t} \ln \frac{V_{\infty} V_0}{V_{\infty} V_t}$, where V_0, V_t and V_{∞} are the volume of standard

NaOH required to neutralize the acid present at the beginning (t = 0), at time t and at the end of the reaction $(t = \infty)$ respectively.

When the ester is 40% hydrolyzed, then show that $5V_t = 2V_{\infty} - 3V_0$.

4 + 4 + 3