(2)

WEST BENGAL STATE UNIVERSITY

B. Sc. Honours Ind Semester Examination. 2020 CEMACOR03T-CHEMISTRY (CC)

Full Marks: +0

Time Allotted: 2 Hours

Answer any four questions taking one from each unit

Init -1

I. (a) Write down possible arrangements of electrons in p^{\prime} configuration and identify the arrangement with maximum exchange energy
(b) What electronic transition in He vectrum would have the same wavelength as the first I yman transition of hydrogen'
(c) How do the shapes of and portals can be obtained from angular function' (ines reasons.
(d) Show that frequency of revolution of an electron in Bohr orbit (quantum number ") is given by the expression

$$
1=(4 \pi m=r) 11 /
$$

(Terms have their usual meaning)
Hence show that the frequency sot the emitted radiation for transition from n to $n_{2},\left(n_{1}-n_{2}\right)=1$ is intermediate between the frequencies of orbital revolution in these two orbits.
2. (a) Give the radial wave-function of the 3 shydrogenic orbital. How many radial nodes are there"
(b) The velocity of an electron is $2 \times 10^{\circ} \mathrm{cm}$ sec. Calculate its wave length
(c) Stage the limitation of Aufbau principle with necessary illustrations
(d) Find out the spectroscopic ground state term symbols for Th and Co wo ns

Init-II

3. (a) Alter calcium, electrons enter the 4 s orbital beture gums to the 3 eurbitals but when a transition metal ionizes, the to electrons are removed first Who
(b) The electron affinity of $A u$ is abnormally high and it may exist dos durst . Jusuf ?
(c) Using Pauling's method, calculate the rads of K and $C l$ ions. The uboened 3 $\mathrm{K}-\mathrm{Cl}$ distance in KCl crystal is 314 pm
4. (a) Calculate Z^{*} for the following electrons in a Scandium atom
(i) $3 p$
(ii) 3 d
(iii) $4 s$
(b) Explain the variation of the second 11 ($\mathrm{kJ} / \mathrm{mole}$) of the elements given in the parenthesis: Mg (1450), AI (1817), Si (1576), P (1903), S (2251), CI (2297).
(c) The atomic radia of Zr and HI are almost identical-Explain.

Unit-III

5. (a) State solvent-system concept of acids and bases. Give one example of each of an acid and a base in liquid ammonia as solvent.
(b) Why acidity in aqueous medium increases in the sequence

$$
\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF} ?
$$

(c) Why do Ca, Al and Ni exist in nature respectively as carbonate, oxide and sulphide? 3
(d) SnCl_{2} can act both as a Lewis acid and a Lewis base. Explain. 2
6. (a) What will be the order of acidity of $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$? Give reasons. 3
(b) State the theory by which the reaction 2

$$
\begin{equation*}
6 \mathrm{CaO}+\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow 2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \text { may be regarded as acid-base reaction. } \tag{3}
\end{equation*}
$$

(c) A buffer solution contains 0.10 mole of $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.10 mole of $\mathrm{CH}_{3} \mathrm{COO}^{-}$per litre. Calculate the pH of the buffer. $\left[\mathrm{Ka}=1.8 \times 10^{-5}\right]$
(d) Arrange the given ions in order of increasing acidity in aqueous medium with justification.

$$
\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \text { and }\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}
$$

Unit-IV

7. (a) Balance the following equation by Ion-electron Method

$$
\mathrm{Br}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaBrO}+\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{O}
$$

(b) According to reduction potential value of $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+} \quad\left(E^{\prime \prime}=+0.15 \mathrm{~V}\right)$ and $\frac{1}{2} \mathrm{I}_{2} / \mathrm{I}^{-}\left(E^{0}=+0.54 \mathrm{~V}\right)$ system, Cu^{2+} should not oxidize I^{-}. Explain how can iodometric titration of Cu^{+}be possible. $\left[\mathrm{K}_{\mathrm{s}(\mathrm{Cu})} \approx 1 \times 10^{-2}\right.$ at $25^{\circ} \mathrm{C}$]
(c) For a redox reaction

$$
\begin{equation*}
\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightleftharpoons \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O} \tag{3}
\end{equation*}
$$

Calculate the equilibrium constant value
(Given $E^{0} \mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}=+1.52$ volt, $E^{0} \mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}=+0.77$ volt)
(d) The solubility of AgCl is $0.0015 \mathrm{~g} \mathrm{dm}^{-3}$. Calculate its solubility product.
8. (a) What are the characteristics of redox indicators? Give one example of a redox $2+1$
indicator.
(b) Give reason why Cl ion is oxidized to Cl_{2} by KMnO_{4} Solution at low pH .

$$
\text { (Given } E^{(1)} \text { vo, vn }=+1.52 \text { volt, } E^{\prime \prime}(1:(1)=+1.36 \text { volt) }
$$

CBCS/B.Sc./Hons./2nd Sem./CEMACOR03T/2020

(c) What are disproportionation and comproportionation reactions? Give one example $2+1$
of each.
(d) From the following Latimer diagram

$$
\begin{aligned}
\mathrm{Sn}^{4+} & \rightarrow \mathrm{Sn}^{2+} \rightarrow \mathrm{Sn} \\
+0.15 \mathrm{~V} & -0.136 \mathrm{~V}
\end{aligned}
$$

(i) Calculate the reduction potential of the reaction $\mathrm{Sn}^{++} \rightarrow \mathrm{Sn}$.
(ii) Comment on the case of reduction of Sn^{2+} to Sn and Sn^{4+} to Sn .
N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp 10 their own respective colleges on the same day date of examination within I hour after end of exam. I niversity / College authorities will nor he held responsible for wrong submission (al in proper address) Students are strongl! advised nor to sutmit multiple coppies of the sume answer script.

