HIRALAL MAZUMDAR MEMORIAL COLLEGE FOR WOMEN DEPARTMENT OF ENVIRONMENTAL SCIENCE ACADEMIC CALENDAR OF SESSION 2018-2022 UNDER CHOICE BASED CREDIT SYSTEM SYLLABUS OF WEST BENGAL STATE UNIVERSITY

Academic Calendar 2018-2019

Department of Environmental Science, HMMCW

June/July, 2018 – December/January 2018/2019

A. WBSU-CBCS Syllabus for Odd Semester

Semester	Syllabus Module	No of Lectures	Teacher's Name	Tentative Distribution
1 st	CORE COURSE 1: ECOLOGY AND ECOSYSTEMS EVSHGEC01T Or EVSGCOR01T Unit 1: Introduction: Basic concepts and definitions: ecology, landscape, habitat, ecozones, biosphere, ecosystems, ecosystem stability, resistance and resilience; autecology; synecology;	5	RA	July- August
	autecology; synecology; major terrestrial biomes			

		ſ	[]
Unit 2: Ecology of individuals : Ecological amplitude; Liebig's Law of the Minimum; Shelford's Law of Tolerance; phenotypic plasticity; ecotypes; ecoclines; acclimation; ecological niche; types of niche: Eltonian niche, Hutchinsonian niche, fundamental niche, realized niche; niche breadth; niche partitioning; niche differentiation; thermoregulation; strategies of adaptation in plants and animals.	10	RA	July- August
Unit 3: Ecology of populations: Concept of population and meta-population; r- and k- selection; characteristics of population: density, dispersion, natality, mortality, life tables, survivorship curves, age	10	RA	September- October

ge log lir de mu dy co	ructure; population growth: eometric, exponential, gistic, density-dependent; mits to population growth; eterministic and stochastic odels of population ynamics; rudreal, ompetitive and stress- lerance strategies.			
co D co co or so as bid sp ef m re co pr co m co m re	nit 4: Ecology of ommunities : Discrete versus continuum ommunity view; ommunity structure and ganization: physiognomy, ociability, species sociations, periodicity, omass, stability, keystone becies, ecotone and edge fect; species interactions: utualism, symbiotic lationships, ommensalism, amensalism, rotocooperation, predation, ompetition, parasitism, imicry, herbivory; cological succession: imary and secondary	10	SC	September- October

successions, models and			
types of successions, climax			
community concepts,			
examples of succession.			
-			
Unit 5: Ecosystem ecology	10	SC	
Types of ecosystem: forest,			
grassland, lentic, lotic,			November-
estuarine, marine, desert,			December
wetlands; ecosystem			
structure and function;			
abiotic and biotic			
components of ecosystem;			
ecosystem boundary;			
ecosystem function;			
ecosystem metabolism;			
primary production and			
models of energy flow;			
secondary production and			
trophic 4 efficiency;			
ecosystem connections: food			
chain, food web; detritus			
pathway of energy flow and			
decomposition processes;			
ecological efficiencies;			
ecological pyramids:			
pyramids of number,			
biomass, and energy.			

1		
8	SC	
		November-
		December
7	RA	
		January
	8 7	

economic costs of biological invasions.			
Practicals:			
EVSHGEC01P Or EVSGCOR01P			
1. Qualitative and quantitative analysis of planktons of aquatic systems.	5	RA	September- October
 Determination of species, dominance and frequency using quadrate/ plot method. 	5	RA	November- December
3. Determination of dissolved oxygen, free carbon dioxide and primary productivity of water samples collected from aquatic ecosystems.	5	SC	January

SC- Saranya Chakraborty

RA- Ritwik Acharya

Department of Environmental Science, HMMCW

January, 2019 – May/June, 2019

Semester	Syllabus Module & Topic	No of	Teacher's	Tentative
		Lectures	Name	Distribution
2^{nd}	CORE COURSE 2:			
	ENVIRONMENTAL			
	BIOTECHNOLOGY			
	EVSHGEC02T Or			
	EVSGCOR02T			
	1. Unit 1: The	15	SC	January-
	Structure and			February
	Function of DNA,			-
	RNA and Protein.			
	2. Recombinant DNA	15	RA	January-
	Technology.			February
	3. Ecological	20	RA	March- April
	restoration and			
	bioremediation			
	4. Ecologically safe	10	SC	April- May
	products and			
	processes			

A. WBSU-CBCS Syllabus for Even Semester

Practical:			
EVSHGEC02P Or			
EVSGCOR02P			
a) Cytological preparation	8	RA	January-
of Mitotic stages from			February
onion root tips (Allium			-
cepa)			
b) Cytological preparation	6	RA	March- April
of Meiotic stages from			-
grasshopper testis			
c) Gram staining of	2	SC	March- April
bacterial sample.			1
d) Estimation of	2	SC	March- April
carbohydrate, protein and			1
DNA.			

SC- Saranya Chakraborty

RA- Mr. Ritwik Acharya

Department of Environmental Science, HMMCW

June/July, 2019 – December/January 2019/2020

A. WBSU-CBCS Syllabus for Odd Semesters

Semester	Syllabus Module	No of	Teacher's Name	Tentative
		Lectures		Distribution
1 st	CORE COURSE 1: ECOLOGY AND ECOSYSTEMS EVSHGEC01T Or EVSGCOR01T Unit 1: Introduction: Basic concepts and definitions: ecology, landscape, habitat, ecozones, biosphere, ecosystems, ecosystem stability, resistance and resilience; autecology; synecology; major terrestrial biomes	5	RA	July- August

		ſ	[]
Unit 2: Ecology of individuals : Ecological amplitude; Liebig's Law of the Minimum; Shelford's Law of Tolerance; phenotypic plasticity; ecotypes; ecoclines; acclimation; ecological niche; types of niche: Eltonian niche, Hutchinsonian niche, fundamental niche, realized niche; niche breadth; niche partitioning; niche differentiation; thermoregulation; strategies of adaptation in plants and animals.	10	RA	July- August
Unit 3: Ecology of populations: Concept of population and meta-population; r- and k- selection; characteristics of population: density, dispersion, natality, mortality, life tables, survivorship curves, age	10	RA	September- October

structure; population growth: geometric, exponential, logistic, density-dependent; limits to population growth; deterministic and stochastic models of population dynamics; rudreal, competitive and stress- tolerance strategies.			
Unit 4: Ecology of communities : Discrete versus continuum community view; community structure and organization: physiognomy, sociability, species associations, periodicity, biomass, stability, keystone species, ecotone and edge effect; species interactions: mutualism, symbiotic relationships, commensalism, amensalism, protocooperation, predation, competition, parasitism, mimicry, herbivory; ecological succession: primary and secondary	10	DM	September- October

		1	
successions, models and types of successions, climax community concepts, examples of succession.			
Unit 5: Ecosystem ecology Types of ecosystem: forest, grassland, lentic, lotic, estuarine, marine, desert, wetlands; ecosystem structure and function; abiotic and biotic components of ecosystem; ecosystem boundary; ecosystem function; ecosystem metabolism; primary production and models of energy flow; secondary production and trophic 4 efficiency; ecosystem connections: food chain, food web; detritus pathway of energy flow and decomposition processes; ecological efficiencies; ecological pyramids: pyramids of number, biomass, and energy.	10	DM	November- December

Unit 6: Biogeochemical cycles and nutrient cycling: Carbon cycle; nitrogen cycle; phosphorus cycle; sulphur cycle; hydrological cycle; nutrient cycle models; ecosystem input of nutrients; biotic accumulation; ecosystem losses; nutrient supply and uptake; role of mycorrhizae; decomposition and nutrient release; nutrient use efficiency; nutrient budget; nutrient conservation strategies.	8	DM	November- December
Unit 7: Biological invasions: Concept of exotics and invasives; natural spread versus man-induced invasions; characteristics of invaders; stages of invasion; mechanisms of invasions; invasive pathways; impacts of invasion on ecosystem and communities; invasive ecogenomics – role of polyploidy and genome size in determining invasiveness;	7	RA	January

economic costs of biological invasions. Practicals :			
EVSHGEC01P Or EVSGCOR01P			
1. Qualitative and quantitative analysis of planktons of aquatic systems.	5	RA	September- October
2. Determination of species, dominance and frequency using quadrate/ plot method.	5	RA	November- December
3. Determination of dissolved oxygen, free carbon dioxide and primary productivity of water samples collected from aquatic ecosystems.	5	DM	January

3rd Semester

Semester	Syllabus Module	No of	Teacher's Name	Tentative
		Lectures		Distribution
1 st	CORE COURSE 3: URBAN ECOSYSTEMS AND ENVIRONMENTAL POLLUTION EVSHGEC03T Or EVSGCOR03T			
	Unit 1: Urbanization : Introduction to urbanization; urban sprawl and associated environmental issues.	4	RA	July- August
	Unit 2: Environment in an urban setting : Man as the driver of urban ecosystem; commodification of nature; metros, cities and towns as sources and sinks of resources; urban transformation; increasing challenges posed by modernity for the environment; urban pollution (air, water, soil).	6	RA	July- August

Unit 3: Urban environmental management : Benefits of environmental management; introduction to green buildings; urban governance; political complexity of applying ecological science to urban policy and planning, smart cities.	8	RA	September- October
Unit 4: Environmental Pollution : Definition of pollution; pollutants; classification of pollutants.	2	RA	September- October
Unit 5: Air pollution: Ambient air quality: monitoring and standards (National Ambient Air Quality Standards of India); air quality index; sources and types of pollutants (primary and secondary); smog (case study); effects of different pollutants on human health 8 (NOx, SOx, PM, CO, CO2, hydrocarbons and VOCs)	8	DM	November- December

and control measures; indoor air pollution: sources and effects on human health.			
Unit 6: Water pollution: Sources of surface and ground water pollution; water quality parameters and standards; organic waste and water pollution; eutrophication; COD, BOD, DO; effect of water contaminants on human	7	RA	November- December
health (nitrate, fluoride, arsenic, chlorine, cadmium, mercury, pesticides). Unit 7: Soil pollution : Causes of soil pollution and degradation; effect of soil	4	DM	November- December
pollution on environment, vegetation and other life forms. Unit 8: Noise pollution: Noise pollution – sources; frequency, intensity and	5	DM	November- December

permissible ambient noise levels; effect on communication, impacts on life forms and humans - working efficiency, physical and mental health; control measures.			
Unit9: Radioactive pollution: Radioactive material and sources of radioactive pollution; effect of radiation on human health (somatic and genetic effects).	3	RA	November- December
Unit 10: Marine pollution: Marine resources and their importance; sources of marine pollution; oil spill and its effects; coral reefs and their demise; coastal area management.	3	RA	January
Unit 11: Pollution control: Activated Sludge Process (ASP) – Trickling Filters – oxidation ponds, fluidized bed reactors, membrane bioreactor neutralization,	10	DM	January

	ETP sludge management;			
	digesters, up flow anaerobic			
	sludge blanket reactor, fixed			
1	film reactors, sequencing			
1	batch reactors, hybrid			
1	reactors, bioscrubbers,			
1	biotrickling filters;			
	regulatory framework for			
-	pollution monitoring and			
	control; case study: Ganga			
	Action Plan; Yamuna Action			
	Plan; implementation of			
	CNG in NCT of Delhi.			
,	Practical:			
	EVSHGEC03P Or			
	EVSIGECOSP OI EVSGCOR03P			
	EVSGEOROSI			
	1. Estimation of soil			
	parameters: pH &	5	DM	September-
	Temperature; Soil porosity,	-		October
	Bulk density, Organic			
	carbon.			
,	2. Estimation of Ground &			
	surface water quality	7		
	parameters (COD, BOD,		RA	November-
]	DO, nitrate, chlorine,			December
	cadmium, mercury).			

Estimation of air quality parameters (NOx, SOx, SPM).		

Department of Environmental Science, HMMCW

January, 2020 – May/June, 2020

A.WBSU-CBCS Syllabus for Even Semesters

Semester	Syllabus Module & Topic	No of	Teacher's	Tentative
		Lectures	Name	Distribution
2 nd	CORE COURSE 2:			
	ENVIRONMENTAL			
	BIOTECHNOLOGY			
	EVSHGEC02T Or			
	EVSGCOR02T			
	1. Unit 1: The	15	DM	January- February
	Structure and			
	Function of DNA,			
	RNA and Protein.			

2. Recombinant DNA	15	RA	January- February
Z. Recombinant DNA Technology.	15		January- rebruary
	20	DA	Manal Annil
3. Ecological	20	RA	March- April
restoration and			
bioremediation			
4. Ecologically safe	10	DM	April- May
products and			
processes			
Practical:			
EVSHGEC02P Or			
EVSGCOR02P			
a) Cytological preparation	8	RA	January- February
of Mitotic stages from			
onion root tips (Allium			
cepa)			
b) Cytological preparation	6	RA	March- April
of Meiotic stages from			1
grasshopper testis			
c) Gram staining of	2	SC	March- April
bacterial sample.			
d) Estimation of	2	SC	March- April
carbohydrate, protein and			·
DNA.			

Semester	Syllabus Module & Topic	No of	Teacher's	Tentative
		Lectures	Name	Distribution
4 th	CORE COURSE 4:			
	BIODIVERSITY AND			
	CONSERVATION			
	EVSHGEC04T Or			
	EVSGCOR04T			
	1. Levels of	8	DM	January-
	organization in the			February
	living world			
	2. Biodiversity patterns	10	RA	January-
	3. Biodiversity	8	DM	February
	estimation			
	4. Importance of	10	RA	March- April
	biodiversity	10	DM	•
	5. Threats to			
	biodiversity	10	RA	March- April
	6. Conservation of			-
	biodiversity			
	7. Biodiversity in India		DM	March- April
	Practical:			-
	EVSHGEC04P Or			
	EVSGCOR04P			
	1. Data Base: NCBI,	5	RA	March- April
	UniProt, PDB			
	2. Sequence	15	RA	March- April
	Collection: mRNA,			-
	Protein Sequences			
	from NCBI and			
	UNIPROT. Sequence			
	alignment: Pair wise			
	and multiple sequence			

alignment, using		
MUSCLE,		
CLUSTALW,		
Alignment		
representation using		
Weblogo.		

Department of Environmental Science, HMMCW

June/July, 2020 – December/January 2020/2021

A. WBSU-CBCS Syllabus for Odd Semesters

Semester	Syllabus Module	No of	Teacher's Name	Tentative
		Lectures		Distribution
1 st	CORE COURSE 1: ECOLOGY AND ECOSYSTEMS EVSHGEC01T Or EVSGCOR01T Unit 1: Introduction:	5	RA	
	Basic concepts and definitions: ecology, landscape, habitat, ecozones, biosphere, ecosystems, ecosystem stability, resistance and resilience; autecology; synecology; major terrestrial biomes			July- August

Unit 2: Ecology of individuals : Ecological amplitude; Liebig's Law of the Minimum; Shelford's Law of Tolerance; phenotypic plasticity; ecotypes; ecoclines; acclimation; ecological niche; types of niche: Eltonian niche, Hutchinsonian niche, fundamental niche, realized niche; niche breadth; niche partitioning; niche differentiation; thermoregulation; strategies of adaptation in plants and animals.	10	RA	July- August
Unit 3: Ecology of populations: Concept of population and meta-population; r- and k- selection; characteristics of population: density, dispersion, natality, mortality, life tables, survivorship curves, age	10	RA	September- October

structure; population growth: geometric, exponential, logistic, density-dependent; limits to population growth; deterministic and stochastic models of population dynamics; rudreal, competitive and stress- tolerance strategies.			
Unit 4: Ecology of communities : Discrete versus continuum community view; community structure and organization: physiognomy, sociability, species associations, periodicity, biomass, stability, keystone species, ecotone and edge effect; species interactions: mutualism, symbiotic relationships, commensalism, amensalism, protocooperation, predation, competition, parasitism, mimicry, herbivory; ecological succession: primary and secondary	10	DM	September- October

	successions, models and			
	types of successions, climax			
	community concepts,			
	examples of succession.			
	Unit 5: Ecosystem ecology	10	DM	
	Types of ecosystem: forest,			
	grassland, lentic, lotic,			November-
	estuarine, marine, desert,			December
	wetlands; ecosystem			
	structure and function;			
	abiotic and biotic			
	components of ecosystem;			
	ecosystem boundary;			
	ecosystem function;			
	ecosystem metabolism;			
	primary production and			
	models of energy flow;			
	secondary production and			
	trophic 4 efficiency;			
	ecosystem connections: food			
	chain, food web; detritus			
	pathway of energy flow and			
	decomposition processes;			
	ecological efficiencies;			
	ecological pyramids:			
	pyramids of number,			
	biomass, and energy.			
·	1		1	

Unit 6: Biogeochemical cycles and nutrient cycl Carbon cycle; nitrogen phosphorus cycle; sulpl cycle; hydrological cyc nutrient cycle models; ecosystem input of nutr biotic accumulation; ecosystem losses; nutrie supply and uptake; role mycorrhizae; decompos and nutrient release; nu use efficiency; nutrient budget; nutrient conserv strategies.	ling: cycle; hur le; rients; ent of sition trient	DM	November- December
Unit 7: Biological invas Concept of exotics and invasives; natural sprea versus man-induced invasions; characteristic invaders; stages of inva mechanisms of invasion invasive pathways; imp of invasion on ecosyste and communities; invas ecogenomics – role of polyploidy and genome in determining invasive	d cs of sion; ns; pacts m sive size	RA	January

economic costs of biological invasions. Practicals : EVSHGEC01P Or EVSGCOR01P			
 Qualitative and quantitative analysis of planktons of aquatic systems. 	5	RA	September- October
2. Determination of species, dominance and frequency using quadrate/ plot method.	5	RA	November- December
3. Determination of dissolved oxygen, free carbon dioxide and primary productivity of water samples collected from aquatic ecosystems.	5	DM	January

3rd Semester

Semester	Syllabus Module	No of	Teacher's Name	Tentative
		Lectures		Distribution
1 st	CORE COURSE 3: URBAN ECOSYSTEMS AND ENVIRONMENTAL POLLUTION EVSHGEC03T Or EVSGCOR03T			
	Unit 1: Urbanization : Introduction to urbanization; urban sprawl and associated environmental issues.	4	RA	July- August
	Unit 2: Environment in an urban setting : Man as the driver of urban ecosystem; commodification of nature; metros, cities and towns as sources and sinks of resources; urban transformation; increasing challenges posed by modernity for the environment; urban pollution (air, water, soil).	6	RA	July- August

Unit 3: Urban environmental management : Benefits of environmental management; introduction to green buildings; urban governance; political complexity of applying ecological science to urban policy and planning, smart cities.	8	RA	September- October
Unit 4: Environmental Pollution : Definition of pollution; pollutants; classification of pollutants.	2	RA	September- October
Unit 5: Air pollution: Ambient air quality: monitoring and standards (National Ambient Air Quality Standards of India); air quality index; sources and types of pollutants (primary and secondary); smog (case study); effects of different pollutants on human health 8 (NOx, SOx, PM, CO, CO2, hydrocarbons and VOCs)	8	DM	November- December

and control measures; indoor air pollution: sources and effects on human health.			
Unit 6: Water pollution: Sources of surface and ground water pollution; water quality parameters and standards; organic waste and water pollution; eutrophication; COD, BOD, DO; effect of water contaminants on human	7	RA	November- December
health (nitrate, fluoride, arsenic, chlorine, cadmium, mercury, pesticides).			
Unit 7: Soil pollution : Causes of soil pollution and degradation; effect of soil pollution on environment, vegetation and other life forms.	4	DM	November- December
 Unit 8: Noise pollution: Noise pollution – sources; frequency, intensity and	5	DM	November- December

levels; comm life for workir	ssible ambient noise effect on unication, impacts on rms and humans - ng efficiency, physical ental health; control res.			
Radioa source polluti on hur	Radioactive pollution: active material and as of radioactive on; effect of radiation man health (somatic enetic effects).	3	RA	November- December
Marine import marine and its and the	0: Marine pollution: e resources and their tance; sources of e pollution; oil spill s effects; coral reefs eir demise; coastal hanagement.	3	RA	January
Activa (ASP) oxidat bed rea	1: Pollution control: ted Sludge Process – Trickling Filters – ion ponds, fluidized actors, membrane ctor neutralization,	10	DM	January

ETP sludge management; digesters, up flow anaerobic sludge blanket reactor, fixed film reactors, sequencing batch reactors, hybrid reactors, bioscrubbers, biotrickling filters; regulatory framework for pollution monitoring and control; case study: Ganga Action Plan; Yamuna Action			
Plan; implementation of CNG in NCT of Delhi. Practical: EVSHGEC03P Or EVSGCOR03P			
1. Estimation of soil parameters: pH & Temperature; Soil porosity, Bulk density, Organic carbon.	5	DM	September- October
2. Estimation of Ground & surface water quality parameters (COD, BOD, DO, nitrate, chlorine, cadmium, mercury).	7	RA	November- December

Estimation of air quality parameters (NOx, SOx, SPM).		

Semester	Syllabus Module	No of	Teacher's Name	Tentative
-th a		Lectures		Distribution
5 th Sem	DISCIPLINE SPECIFIC			
	ELECTIVE 1: ENERGY AND			
	ENVIRONMENT Credits:			
	(Theory-5, Tutorials-1)			
	(EVSGDSE01T)			
	Unit 1: Introduction	8	RA	July- August
	Defining energy; forms and			
	importance; energy use from a			
	historical perspective: discovery			
	of fire, discovery of locomotive			
	engine and fossil fuels,			
	electrification of cities, oil wars			
	in the Middle East, advent of			
	nuclear energy; sources and			
	sinks of energy; energy over-			
	consumption in urban setting			
	consumption in aroun setting			
	Unit 2: Energy resources	12	DM	July- August
	Global energy resources;			
	renewable and non-renewable			
	resources: distribution and			
	availability; past, present, and			

future technologies for capturing and integrating these resources into our energy infrastructure; energy-use scenarios in rural and urban setups; energy conservation.		
Unit 3: Energy demand Global energy demand: historical and current perspective; energy demand and use in domestic, industrial, agriculture and transportation sector; generation and 13 utilization in rural and urban environments; changes in demand in major world economies; energy subsidies and environmental costs.	12	September- October
Unit 4: Energy, environment and society Nature, scope and analysis of local and global impacts of energy use on the environment; fossil fuel burning and related issues of air pollution, greenhouse effect, global warming and, urban heat island effect; nuclear energy and related issues such as radioactive waste, spent fuel; social inequalities related to energy production, distribution, and use.	12	September- October
Unit 5: Energy, ecology and the environment Energy production as driver of environmental change; energy	9	November- December

production, transformation and utilization associated environmental impacts (Chernobyl and Fukushima nuclear accidents, construction of dams, environmental pollution); energy over- consumption and its impact on the environment, economy, and global change.			
Unit 6: Politics of energy policy (10 lectures) Political choices in energy policy globally and in the Indian context (historical and contemporary case studies); domestic and international energy policy; energy diplomacy and bilateral ties of India with her neighbours.	10		November- December
Unit 7: Our energy future Current and future energy use patterns in the world and in India; evolution of energy use over time; alternative sources as green energy (biofuels, wind energy, solar energy, geothermal energy; ocean energy; nuclear energy); need for energy efficiency; energy conservation and sustainability; action strategies for sustainable energy mix and management from a future perspective.	12	RA	January

Academic Calendar

Department of Environmental Science, HMMCW

January, 2021 - May/June, 2021

<u>A.WBSU-CBCS Syllabus for Even Semesters</u>

Semester	Syllabus Module & Topic	No of	Teacher's	Tentative
		Lectures	Name	Distribution
2 nd	CORE COURSE 2:			
	ENVIRONMENTAL			
	BIOTECHNOLOGY			
	EVSHGEC02T Or			
	EVSGCOR02T			
	1. Unit 1: The	15	DM	January- February
	Structure and			
	Function of DNA,			
	RNA and Protein.			

2. Recombinant DNA	15	RA	January- February
Technology.			
3. Ecological	20	RA	March- April
restoration and			_
bioremediation			
4. Ecologically safe	10	DM	April- May
products and			
processes			
Practical:			
EVSHGEC02P Or			
EVSGCOR02P	_		
a) Cytological preparation	8	RA	January- February
of Mitotic stages from			
onion root tips (Allium			
cepa)	<i>.</i>	DA	
b) Cytological preparation	6	RA	March- April
of Meiotic stages from			
grasshopper testis	2	SC	Manah Amil
c) Gram staining of	2	SC	March- April
bacterial sample. d) Estimation of	2	SC	March April
,	2	SC	March- April
carbohydrate, protein and DNA.			
DNA.			

Semester	Syllabus Module & Topic	No of	Teacher's	Tentative
		Lectures	Name	Distribution
4 th	CORE COURSE 4:			
	BIODIVERSITY AND			
	CONSERVATION			
	EVSHGEC04T Or			
	EVSGCOR04T			
	1. Levels of	8	DM	January-
	organization in the			February
	living world			
	2. Biodiversity patterns	10	RA	January-
	3. Biodiversity	8	DM	February
	estimation			
	4. Importance of	10	RA	March- April
	biodiversity	10	DM	
	5. Threats to			
	biodiversity	10	RA	March- April
	6. Conservation of			
	biodiversity			
	7. Biodiversity in India		DM	March- April
	Practical:			^
	EVSHGEC04P Or			
	EVSGCOR04P			
	1. Data Base: NCBI,	5	RA	March- April
	UniProt, PDB			
	2. Sequence	15	RA	March- April
	Collection: mRNA,			1
	Protein Sequences			
	from NCBI and			
	UNIPROT. Sequence			
	alignment: Pair wise			
	and multiple sequence			

MUSCLE, CLUSTALW,		
Alignment representation using Weblogo.		

Semester	Syllabus Module & Topic	No of	Teacher's	Tentative
		Lectures	Name	Distribution
6 th	DISCIPLINE SPECIFIC			
	ELECTIVE 3: SOLID WASTE	3		
	MANAGEMENT Credits:			
	(Theory-4) (EVSGDSE03T)			
	Unit 1: Introduction	3	DM	January-
	Sources and generation of			February
	solid waste, their classification			
	and chemical composition;			
	characterization of municipal			
	solid waste; hazardous waste			
	and biomedical waste.			
	Unit 2: Effect of solid waste	8	RA	January-
	disposal on environment			February
	Impact of solid waste on			
	environment, human and plant			
	health; effect of solid waste			
	and industrial effluent			
	discharge on water quality and			
	aquatic life; mining waste and			
	land degradation; effect of			
	landfill leachate on soil			
	characteristics and ground			
	water pollution.			

Unit 3: Solid waste Management Different techniques used in collection, storage, transportation and disposal of solid waste (municipal, hazardous and biomedical waste); landfill (traditional and sanitary landfill design); thermal treatment (pyrolysis and incineration) of waste material; drawbacks in waste management techniques.	14	DM	January- February
Unit 4: Industrial waste management Types of industrial waste: hazardous and non-hazardous; effect of industrial waste on air, water and soil; industrial waste management and its importance; stack 17 emission control and emission monitoring; effluent treatment plant and sewage treatment plant.	6	RA	January- February
Unit 5: Resource Recovery 4R- reduce, reuse, recycle and recover; biological processing - composting, anaerobic digestion, aerobic treatment; reductive dehalogenation; mechanical biological treatment; green techniques for waste treatment. Unit 6: Waste- to- energy	8	RA DM	January- February

(WTE)			March- April
Concept of energy recovery			iviaren ripin
from waste; refuse derived fuel			
(RDF); different WTE			
processes: combustion,			
pyrolysis, landfill gas (LFG)			
recovery; anaerobic digestion;			
gasification.		514	March- April
	4	DM	
Unit 7: Integrated waste			
management			
Concept of Integrated waste			
management; waste			
management hierarchy;			
methods and importance of			
Integrated waste management.			
	5		Mari
Unit 8: Life cycle assessment		DM/RA	May
(LCA)			
Cradle to grave approach;			
lifecycle inventory of solid			
waste; role of LCA in waste			
management; advantage and			
limitation of LCA; case study			
on LCA of a product.			
r · · · ·	8	RA	May
Unit 9: Policies for solid waste	Ĩ		
management			
Municipal Solid Wastes			
(Management and Handling)			
Rules 2000; Hazardous Wastes			
Management and Handling			
Rules 1989; Bio-Medical			
Waste (Management and			
Handling) Rules 1998;			
Ecofriendly or green products.			

Academic Calendar

Department of Environmental Science, HMMCW

June/July, 2021 – December/January 2021/2022

A. WBSU-CBCS Syllabus for Odd Semesters

Semester	Syllabus Module	No of	Teacher's Name	Tentative
		Lectures		Distribution
1 st	CORE COURSE 1: ECOLOGY AND ECOSYSTEMS EVSHGEC01T Or EVSGCOR01T Unit 1: Introduction:	5	RA	
	Basic concepts and definitions: ecology, landscape, habitat, ecozones, biosphere, ecosystems, ecosystem stability, resistance and resilience; autecology; synecology; major terrestrial biomes			July- August

Unit 2: Ecology of individuals : Ecological amplitude; Liebig's Law of the Minimum; Shelford's Law of Tolerance; phenotypic plasticity; ecotypes; ecoclines; acclimation; ecological niche; types of niche: Eltonian niche, Hutchinsonian niche, fundamental niche, realized niche; niche breadth; niche partitioning; niche differentiation; thermoregulation; strategies of adaptation in plants and animals.	10	RA	July- August
Unit 3: Ecology of populations: Concept of population and meta-population; r- and k- selection; characteristics of population: density, dispersion, natality, mortality, life tables, survivorship curves, age	10	RA	September- October

structure; population growth: geometric, exponential, logistic, density-dependent; limits to population growth; deterministic and stochastic models of population dynamics; rudreal, competitive and stress- tolerance strategies.			
Unit 4: Ecology of communities : Discrete versus continuum community view; community structure and organization: physiognomy, sociability, species associations, periodicity, biomass, stability, keystone species, ecotone and edge effect; species interactions: mutualism, symbiotic relationships, commensalism, amensalism, protocooperation, predation, competition, parasitism, mimicry, herbivory; ecological succession: primary and secondary	10	DM	September- October

	successions, models and			
	types of successions, climax			
	community concepts,			
	examples of succession.			
	Unit 5: Ecosystem ecology	10	DM	
	Types of ecosystem: forest,			
	grassland, lentic, lotic,			November-
	estuarine, marine, desert,			December
	wetlands; ecosystem			
	structure and function;			
	abiotic and biotic			
	components of ecosystem;			
	ecosystem boundary;			
	ecosystem function;			
	ecosystem metabolism;			
	primary production and			
	models of energy flow;			
	secondary production and			
	trophic 4 efficiency;			
	ecosystem connections: food			
	chain, food web; detritus			
	pathway of energy flow and			
	decomposition processes;			
	ecological efficiencies;			
	ecological pyramids:			
	pyramids of number,			
	biomass, and energy.			
·	1		1	

Unit 6: Biogeochemical cycles and nutrient cycl Carbon cycle; nitrogen phosphorus cycle; sulpl cycle; hydrological cyc nutrient cycle models; ecosystem input of nutr biotic accumulation; ecosystem losses; nutrie supply and uptake; role mycorrhizae; decompos and nutrient release; nu use efficiency; nutrient budget; nutrient conserv strategies.	ling: cycle; hur le; rients; ent of sition trient	DM	November- December
Unit 7: Biological invas Concept of exotics and invasives; natural sprea versus man-induced invasions; characteristic invaders; stages of inva mechanisms of invasion invasive pathways; imp of invasion on ecosyste and communities; invas ecogenomics – role of polyploidy and genome in determining invasive	d cs of sion; ns; pacts m sive size	RA	January

economic costs of biological invasions. Practicals : EVSHGEC01P Or EVSGCOR01P			
 Qualitative and quantitative analysis of planktons of aquatic systems. 	5	RA	September- October
2. Determination of species, dominance and frequency using quadrate/ plot method.	5	RA	November- December
3. Determination of dissolved oxygen, free carbon dioxide and primary productivity of water samples collected from aquatic ecosystems.	5	DM	January

3rd Semester

Semester	Syllabus Module	No of	Teacher's Name	Tentative
		Lectures		Distribution
1 st	CORE COURSE 3: URBAN ECOSYSTEMS AND ENVIRONMENTAL POLLUTION EVSHGEC03T Or EVSGCOR03T			
	Unit 1: Urbanization : Introduction to urbanization; urban sprawl and associated environmental issues.	4	RA	July- August
	Unit 2: Environment in an urban setting : Man as the driver of urban ecosystem; commodification of nature; metros, cities and towns as sources and sinks of resources; urban transformation; increasing challenges posed by modernity for the environment; urban pollution (air, water, soil).	6	RA	July- August

Unit 3: Urban environmental management : Benefits of environmental management; introduction to green buildings; urban governance; political complexity of applying ecological science to urban policy and planning, smart cities.	8	RA	September- October
Unit 4: Environmental Pollution : Definition of pollution; pollutants; classification of pollutants.	2	RA	September- October
Unit 5: Air pollution: Ambient air quality: monitoring and standards (National Ambient Air Quality Standards of India); air quality index; sources and types of pollutants (primary and secondary); smog (case study); effects of different pollutants on human health 8 (NOx, SOx, PM, CO, CO2, hydrocarbons and VOCs)	8	DM	November- December

and control measures; indoor air pollution: sources and effects on human health.			
Unit 6: Water pollution: Sources of surface and ground water pollution; water quality parameters and standards; organic waste and water pollution; eutrophication; COD, BOD, DO; effect of water contaminants on human	7	RA	November- December
health (nitrate, fluoride, arsenic, chlorine, cadmium, mercury, pesticides).			
Unit 7: Soil pollution : Causes of soil pollution and degradation; effect of soil pollution on environment, vegetation and other life forms.	4	DM	November- December
 Unit 8: Noise pollution: Noise pollution – sources; frequency, intensity and	5	DM	November- December

levels; comm life for workir	ssible ambient noise effect on unication, impacts on rms and humans - ng efficiency, physical ental health; control res.			
Radioa source polluti on hur	Radioactive pollution: active material and as of radioactive on; effect of radiation man health (somatic enetic effects).	3	RA	November- December
Marine import marine and its and the	0: Marine pollution: e resources and their tance; sources of e pollution; oil spill s effects; coral reefs eir demise; coastal hanagement.	3	RA	January
Activa (ASP) oxidat bed rea	1: Pollution control: ted Sludge Process – Trickling Filters – ion ponds, fluidized actors, membrane ctor neutralization,	10	DM	January

ETP sludge management; digesters, up flow anaerobic sludge blanket reactor, fixed film reactors, sequencing batch reactors, hybrid reactors, bioscrubbers, biotrickling filters; regulatory framework for pollution monitoring and control; case study: Ganga Action Plan; Yamuna Action			
Plan; implementation of CNG in NCT of Delhi. Practical: EVSHGEC03P Or EVSGCOR03P			
1. Estimation of soil parameters: pH & Temperature; Soil porosity, Bulk density, Organic carbon.	5	DM	September- October
2. Estimation of Ground & surface water quality parameters (COD, BOD, DO, nitrate, chlorine, cadmium, mercury).	7	RA	November- December

Estimation of air quality parameters (NOx, SOx, SPM).		

Semester	Syllabus Module	No of	Teacher's Name	Tentative
-th a		Lectures		Distribution
5 th Sem	DISCIPLINE SPECIFIC			
	ELECTIVE 1: ENERGY AND			
	ENVIRONMENT Credits:			
	(Theory-5, Tutorials-1)			
	(EVSGDSE01T)			
	Unit 1: Introduction	8	RA	July- August
	Defining energy; forms and			5 0
	importance; energy use from a			
	historical perspective: discovery			
	of fire, discovery of locomotive			
	engine and fossil fuels,			
	electrification of cities, oil wars			
	in the Middle East, advent of			
	nuclear energy; sources and			
	sinks of energy; energy over-			
	consumption in urban setting			
	consumption in aroun setting			
	Unit 2: Energy resources	12	DM	July- August
	Global energy resources;			
	renewable and non-renewable			
	resources: distribution and			
	availability; past, present, and			

future technologies for capturing and integrating these resources into our energy infrastructure; energy-use scenarios in rural and urban setups; energy conservation.		
Unit 3: Energy demand Global energy demand: historical and current perspective; energy demand and use in domestic, industrial, agriculture and transportation sector; generation and 13 utilization in rural and urban environments; changes in demand in major world economies; energy subsidies and environmental costs.	12	September- October
Unit 4: Energy, environment and society Nature, scope and analysis of local and global impacts of energy use on the environment; fossil fuel burning and related issues of air pollution, greenhouse effect, global warming and, urban heat island effect; nuclear energy and related issues such as radioactive waste, spent fuel; social inequalities related to energy production, distribution, and use.	12	September- October
Unit 5: Energy, ecology and the environment Energy production as driver of environmental change; energy	9	November- December

production, transformation and utilization associated environmental impacts (Chernobyl and Fukushima nuclear accidents, construction of dams, environmental pollution); energy over- consumption and its impact on the environment, economy, and global change.			
Unit 6: Politics of energy policy (10 lectures) Political choices in energy policy globally and in the Indian context (historical and contemporary case studies); domestic and international energy policy; energy diplomacy and bilateral ties of India with her neighbours.	10		November- December
Unit 7: Our energy future Current and future energy use patterns in the world and in India; evolution of energy use over time; alternative sources as green energy (biofuels, wind energy, solar energy, geothermal energy; ocean energy; nuclear energy); need for energy efficiency; energy conservation and sustainability; action strategies for sustainable energy mix and management from a future perspective.	12	RA	January

Academic Calendar

Department of Environmental Science, HMMCW

January, 2022 – May/June, 2022

<u>A.WBSU-CBCS Syllabus for Even Semesters</u>

Semester	Syllabus Module & Topic	No of	Teacher's	Tentative
		Lectures	Name	Distribution
2 nd	CORE COURSE 2:			
	ENVIRONMENTAL			
	BIOTECHNOLOGY			
	EVSHGEC02T Or			
	EVSGCOR02T			
	1. Unit 1: The	15	DM	January- February
	Structure and			
	Function of DNA,			
	RNA and Protein.			

2. Recombinant DNA	15	RA	January- February
Technology.			
3. Ecological	20	RA	March- April
restoration and			_
bioremediation			
4. Ecologically safe	10	DM	April- May
products and			
processes			
Practical:			
EVSHGEC02P Or			
EVSGCOR02P	_		
a) Cytological preparation	8	RA	January- February
of Mitotic stages from			
onion root tips (Allium			
cepa)	-	DA	
b) Cytological preparation	6	RA	March- April
of Meiotic stages from			
grasshopper testis	2	SC	Manah Annil
c) Gram staining of	2	SC	March- April
bacterial sample.	2	SC	March April
d) Estimation of	2	SC	March- April
carbohydrate, protein and DNA.			
DINA.			

Semester	Syllabus Module & Topic	No of	Teacher's	Tentative
		Lectures	Name	Distribution
4 th	CORE COURSE 4:			
	BIODIVERSITY AND			
	CONSERVATION			
	EVSHGEC04T Or			
	EVSGCOR04T			
	1. Levels of	8	DM	January-
	organization in the			February
	living world			
	2. Biodiversity patterns	10	RA	January-
	3. Biodiversity	8	DM	February
	estimation			
	4. Importance of	10	RA	March- April
	biodiversity	10	DM	
	5. Threats to			
	biodiversity	10	RA	March- April
	6. Conservation of			
	biodiversity			
	7. Biodiversity in India		DM	March- April
	Practical:			•
	EVSHGEC04P Or			
	EVSGCOR04P			
	1. Data Base: NCBI,	5	RA	March- April
	UniProt, PDB			
	2. Sequence	15	RA	March- April
	Collection: mRNA,			1
	Protein Sequences			
	from NCBI and			
	UNIPROT. Sequence			
	alignment: Pair wise			
	and multiple sequence			

	JSCLE, JUSTALW,
re	gnment presentation using eblogo.

Semester	Syllabus Module & Topic	No of	Teacher's	Tentative
		Lectures	Name	Distribution
6 th	DISCIPLINE SPECIFIC			
	ELECTIVE 3: SOLID WASTE	3		
	MANAGEMENT Credits:			
	(Theory-4) (EVSGDSE03T)			
	Unit 1: Introduction	3	DM	January-
	Sources and generation of			February
	solid waste, their classification			
	and chemical composition;			
	characterization of municipal			
	solid waste; hazardous waste			
	and biomedical waste.			
	Unit 2: Effect of solid waste	8	RA	January-
	disposal on environment			February
	Impact of solid waste on			
	environment, human and plant			
	health; effect of solid waste			
	and industrial effluent			
	discharge on water quality and			
	aquatic life; mining waste and			
	land degradation; effect of			
	landfill leachate on soil			
	characteristics and ground			
	water pollution.			

Unit 3: Solid waste Management Different techniques used in collection, storage, transportation and disposal of solid waste (municipal, hazardous and biomedical waste); landfill (traditional and sanitary landfill design); thermal treatment (pyrolysis and incineration) of waste material; drawbacks in waste management techniques.	14	DM	January- February
Unit 4: Industrial waste management Types of industrial waste: hazardous and non-hazardous; effect of industrial waste on air, water and soil; industrial waste management and its importance; stack 17 emission control and emission monitoring; effluent treatment plant and sewage treatment plant.	6	RA	January- February
Unit 5: Resource Recovery 4R- reduce, reuse, recycle and recover; biological processing - composting, anaerobic digestion, aerobic treatment; reductive dehalogenation; mechanical biological treatment; green techniques for waste treatment. Unit 6: Waste- to- energy	8	RA DM	January- February

(WTE)			March- April
Concept of energy recovery			inarch riphi
from waste; refuse derived fuel			
(RDF); different WTE			
processes: combustion,			
pyrolysis, landfill gas (LFG)			
recovery; anaerobic digestion;			
gasification.	4	DM	March- April
	4	DM	
Unit 7: Integrated waste			
management			
Concept of Integrated waste			
management; waste			
management hierarchy;			
methods and importance of			
Integrated waste management.			
	5		May
Unit 8: Life cycle assessment		DM/RA	
(LCA)			
Cradle to grave approach;			
lifecycle inventory of solid			
waste; role of LCA in waste			
management; advantage and			
limitation of LCA; case study			
on LCA of a product.			
	8	RA	May
Unit 9: Policies for solid waste			
management			
Municipal Solid Wastes			
(Management and Handling)			
Rules 2000; Hazardous Wastes			
Management and Handling			
Rules 1989; Bio-Medical			
Waste (Management and			
Handling) Rules 1998;			
Ecofriendly or green products.			

DM- Dr. Debashis Majumder RA- Mr. Ritwik Acharya