HIRALAL MAZUMDAR MEMORIAL COLLEGE FOR WOMEN

DAKSHINESWAR . KOLKATA - 700035 E-MAIL: HMMCW35@GMAIL.COM

<u>WEBSITE: WWW.HMMCOLLEGE.org</u> Academic Calendar for Mathmatics General

YEAR : 2017-18

1st Year General

Session	Topics	Remarks
Term 1, Half 1	1. Classical Algebra (Matrix, Determinants)	27 days
(July –	2. 2D Geometry (Pair of St. Line)	Puja Vacation
October)	3. Vector Algebra (Vector Algebra)	
	4. Differential Equation (upto Homogeneous	
	Equation)	
Term 1, Half 2	1. Classical Algebra (Complex no. Polynomials)	1 Week Winter
(November –	2. 2D Geometry (Tangents)	Recess
December)	3. Vector Algebra (Application)	
	4. Differential Equation (Rest)	
Term 2, Half 1	1. Differential Calculus(upto successive Derivatives)	
(January–	2. 2D Geometry (poles and polars)	
March)	3. Integral Calculus	
	4. Vector Equation (problems)	
Term 2, Half 2	1. Differential Calculus (Rest)	1 st Yr. & 2 nd Yr.
(April – June)	2. All topics for counselling	Selection Test,
		University Exam,
		4 Weeks Summer
		Recess

2nd Year General

Session	Topics	Remarks
Term 1, Half 1	1. Differential Calculus (upto Real valued Function)	27 days
(July –	2. Integral Calculus (Improper, Double)	Puja Vacation
October	3. Modern Algebra (Set, Group)	
	4. 3D Geometry (Coordinates, Planes, St. Line)	
Term 1, Half 2	1. Differential Calculus (Rest)	1 Week Winter
(November –	2. Integral Calculus (Rest)	Recess
December)	3. Modern Algebra (Rest)	

Session	Торіс	Remarks
Term 1, Half	4. 3D Geometry (Sphere.Cone)	1 week
2(November-	5. L.P.P. (Fundamentals, Graphical Solution)	Winter Recess
December)	6. Statistics (Statistical method, Sampling theory	
Term2, Half 1	1. Differential equation	
(January-	2. Statistics(Rest)	
March)	3. L.P.P. (Simplex method)	
	Numerical Methods(Interpolation)	
Term 2, Half 2	1. Probability	1 st Yr. & 2 nd Yr.
(April – June)	2. L.P.P. (Transportation & Assignments)	Selection Test,
	3. Numerical methods (Integration, Roots of	University Exam, 4
	Equation)	Weeks Summer
		Recess

3rd Year General

Session	Торіс	Remarks
Term 1, Half 1	1. Computer Fundamentals	27 days
(July -October)	2. Boolean Algebra	Puja Vacation
	3. Discrete Mathematics (Integers)	
	4. Uniform Convergence, Power Series, Fourier	
	series	
	5. Second order differential equation : (a) Method	
	of variation of parameters, (b) Method of	
	undetermined co-efficients (c) Simple	
	eigenvalue problem.	
Term 1, Half 2	1. Computer Programming	1 week
(November-	2. Discrete mathematics (Congruence)	Winter Recess
December)	3. Boolean Algebra	
	4. Third and Fourth order ordinary differential	
	equation with constant coefficients.	
	5. Euler's Homogeneous Equation.	
	6. Simultaneous linear differential equation with	
	constant co efficient	
T D H K A	7. Laplace Transform	
Term2, Half 1	1. Computer Programming	3 rd year selection
(January-	2. Discrete mathematics	lest
March)	(Recurrence Relation & Boolean Algebra)	
	3. Partial Differential Equation (PDE)	
Term 2. Half 2		1 st Yr. & 2 nd Yr.
(April – June)		Selection
х г ,		Test.
		University Exam.
		4 Weeks Summer
		Recess

HMM COLLEGE FOR WOMEN.					
	ACADEMIC CALENDAR 2018-19				
SEMESTER/	SYLLABUS	NO. OF	TEACHERS	DISTRIBUTION	
YEAR	MODULE	LECTURES			
1 st SEM	limit,	30	LM	LIMIT, CONTINUITY, TYPES OF	
	CONTINUITY			DISCONTINUITIES, DIFFERENTIABILITY	
				OF FUNCTIONS, SUCCESSIVE	
				DIFFERENTIATION, LEIBNITZ'S TH,	
				PARTIAL DIFFERENTIATION, EULER'S TH.	
	APPLICATION	30	LM	TANGENTS & NORMALS, CURVATURE,	
				ASYMPTOTES, SINGULAR POINTS,	
				TRACING OF CURVES, PARAMETRIC	
				REPRESENTATION OF CURVES AND	
				TRACING OF PARAMETRIC CURVES,	
				POLAR COORDINATES AND TRACING OF	
				CURVES IN POLAR COORDINATES.	
	MEAN VALUE	30	LM	ROLLE'S TH, MEAN VALUE TH, TAYLOR'S	
	TH.			TH WITH LAGRANGE'S AND CAUCHY'S	
				FORMS OF REMAINDER, TAYLOR'S	
				SERIES, MACLAURIN'S SERIES OF FNS,	
				MAXIMA & MINIMA, INDETERMINATE	
				FORMS	

2nd Year General

Session	Topics	Remarks
Term 1, Half 1	5. Differential Calculus (upto Real valued Function)	27 days
(July –	6. Integral Calculus (Improper, Double)	Puja Vacation
October	7. Modern Algebra (Set, Group)	
	8. 3D Geometry (Coordinates, Planes, St. Line)	
Term 1, Half 2	7. Differential Calculus (Rest)	1 Week Winter
(November –	8. Integral Calculus (Rest)	Recess
December)	9. Modern Algebra (Rest)	

Session	Topics	Remarks
Term 1, Half	10. 3D Geometry (Sphere.Cone)	1 week
2(November-	11. L.P.P. (Fundamentals, Graphical Solution)	Winter Recess
December)	12. Statistics (Statistical method, Sampling theory	
Term2, Half 1	5. Differential equation	3 rd year selection
(January-	6. Statistics(Rest)	Test & 1 st
March)	7. L.P.P. (Simplex method)	SEMESTER END

	8. Numerical Methods(Interpolation)	university Examination
Term 2, Half 2	4. Probability	2nd Yr. Selection
(April – June)	5. L.P.P. (Transportation & Assignments)	Test, University
	6. Numerical methods (Integration, Roots of	Exam, 4 weeks
	Equation)	Summer Recess

NB: In addition to lectures classes, there will be tutorials, class tests, contact with teachers etc. For details please refer to departmental time table.

3rd Year General

Session	Торіс	Remarks
Term 1, Half 1	6. Computer Fundamentals	27 days
(July -October)	7. Boolean Algebra	Puja Vacation
	8. Discrete Mathematics (Integers)	
	9. Uniform Convergence, Power Series, Fourier	
	series	
	10. Second order differential equation : (a) Method	
	of variation of parameters, (b) Method of	
	undetermined co-efficients (c) Simple	
	eigenvalue problem.	
Term 1, Half 2	8. Computer Programming	1 week
(November-	9. Discrete mathematics (Congruence)	Winter Recess
December)	10. Boolean Algebra	
	11. Third and Fourth order ordinary differential	
	equation with constant coefficients.	
	12. Euler's Homogeneous Equation.	
	13. Simultaneous linear differential equation with	
	constant co efficient	
	14. Laplace Transform	
Term2, Half 1	4. Computer Programming	3 rd year selection
(January-	5. Discrete mathematics	Test
March)		
	(Recurrence Relation & Boolean Algebra)	
	6. Partial Differential Equation (PDE)	
Term 2, Half 2	Extra classes, Remedial classes as per Students'	2 nd Yr. Selection
(April – June)	requirements	Test,

ſ		University Exam,
		4 Weeks Summer
		Recess

SEMESTER/	SYLLABUS	NO. OF	TEACHERS	DISTRIBUTION
YEAR	MODULE	LECTURES		
1 st SEM	LIMIT,	30	LM	LIMIT, CONTINUITY, TYPES OF
	CONTINUITY			DISCONTINUITIES, DIFFERENTIABILITY
				OF FUNCTIONS, SUCCESSIVE
				DIFFERENTIATION, LEIBNITZ'S TH,
				PARTIAL DIFFERENTIATION, EULER'S TH.
	APPLICATION	30	LM	TANGENTS & NORMALS, CURVATURE,
				ASYMPTOTES, SINGULAR POINTS,
				TRACING OF CURVES, PARAMETRIC
				REPRESENTATION OF CURVES AND
				TRACING OF PARAMETRIC CURVES,
				POLAR COORDINATES AND TRACING OF
				CURVES IN POLAR COORDINATES.
	MEAN VALUE	30	LM	ROLLE'S TH, MEAN VALUE TH, TAYLOR'S
	TH.			TH WITH LAGRANGE'S AND CAUCHY'S
				FORMS OF REMAINDER, TAYLOR'S
				SERIES, MACLAURIN'S SERIES OF FNS,
				MAXIMA & MINIMA, INDETERMINATE
				FORMS
2 ND SEM	INTEGRATING	35	LM	FIRST ORDER EXACT D.E., INTEGRATING
	FACTORS & ITS			FACTORS, RULES TO FIND AN
	USES TO D.E.			INTEGRATING FACTOR. FIRST ORDER
				HIGHER DEGREE EQUATIONS SOLVABLE
				FOR X,Y,P. METHODS FOR SOLVING
				HIGHER-ORDER D.E.SOLVING A
				DIFFERENTIAL EQUATION BY REPLACING
				ITS ORDER. WRONSKIANS & ITS
				PROPERTIES.
	LINEAR EQN.	30	LM	LINEAR HOMOGENEOUS EQNS WITH
				CONST COEFFTS, LINEAR NON-
				HOMOGENEOUS EQNS. THE METHOD
				OF VARIATION OF PARAMETERS. THE
				CAUCHY-EULER EQN. SIMULTANEOUS
				DIFFL. EQN. TOTAL DIFFL. EQN.
	PARTIAL	25	LM	ORDER & DEGREE OF PARTIAL
	DIFFERENTIAL			DIFFERENTIAL EQN., CONCEPT OF
	EQN.			LINEAR AND NON-LINEAR PARTIAL
				DIFFL. EQNS, FORMATION OF FIRST
				ORDER PARTIAL DIFFL. EQN., LINEAR
				PARTIAL DIFFL. EQN. OF FIRST ORDER,

				LAGRANGE'S METHOD, CHARPIT'S
				METHOD.
				CLASSIFICATION OF 2 ND ORDER PARTIAL
				DIFFL. EQN. INTO ELLIPTIC, PARABOLIC
				& HYPERBOLIC THROUGH
				ILLUSTRATIONS.
3 RD SEM	SETS	12	LM	FINITE & INFINITE SETS, EXAMPLES OF
				COUNTABLE AND UNCOUNTABLE SETS.
				REAL LINE, BOUNDED SETS, SUPREMA
				AND INFIMA, COMPLETENESS
				PROPERTY OF R, ARMEDIAN PROPERTY
				OF R, INTERVALS, CONCEPT OF CLUSTER
				POINTS AND STATEMENT OF BOLZANO-
				WEIERSTRASS TH.
	SEQUENCE	24	LM	REAL SEQUENCE, BOUNDED SEQUENCE,
				CAUCHY'S CONVERGENCE CRITERION
				FOR SEQUENCE. CAUCHY'S THEOREM
				ON LIMIT, ORDER PRESERVATION AND
				SQUEEZE THEOREM, MONOTONE
				SEQUENCE AND THEIR CONVERGENCE
	SERIES	24	LM	INFINITE SERIES, CAUCHY
				CONVERGENCE CRITERION FOR SERIES,
				POSITIVE TERM SERIES, GEOMETRIC
				SERIES, COMPARISON TEST,
				CONVERGENCE OF P-SERIES, ROOT TEST,
				RATIO TEST, ALTERNATING SERIES,
				LEIBNITZ'S TEST. DEFINITION &
				EXAMPLES OF ABSOLUTE AND
				CONDITIONAL CONVERGENCE.
	CONVERGENCE	30	LM	SEQUENCES & SERIES OF FNS,
				POINTWISE & UNIFORM CONVERGENCE,
				M-TEST, STATEMENTS OF THE RESULTS
				ABOUT UNIFORM CONVERGENCE AND
				INTEGRABILITY AND DIFFERENTIABILITY
				OF FNS. POWER SERIES AND RADIUS OF
				CONVERGENCE.
3 RD YR	BOOLEAN	10	LM	BASIC POSTULATES & DEFINITION,
	ALGEBRA			BOOLEAN FUNCTION, TRUTH TABLE,
				STANDARD FORMS OF BOOLEAN
				FUNCTION DNF & CNF, MINTERMS &
				MAXTERMS, PRINCIPLE OF DUALITY.

				SOME LAWS & THEOREM OF BOOLEAN
				ALGEBRA, SIMPLIFICATION OF BOOLEAN
				EXPRESSIONS, ALGEBRAIC METHOD &
				KARNAUGH MAP METHOD.
				APPLICATION OF BOOLEAN ALGEBRA
				SWITCHING CIRCUITS, CIRCUIT HAVING
				SOME SPECIFIED PROPERTIES, LOGICAL
				GATES-AND NOT OR NAND NOR FTC
	COMPLITER	20	IM	
	SCIENCE AND	20	2.00	COMPUTER GENERATION. COMPUTER
	PROGRAMMING			ANATOMY DIFFERENT COMPONENTS OF
				A COMPUTER SYSTEM, OPERATING
				SYSTEM HARDWARF AND SOFTWARF
				POSITIONAL NUMBER SYSTEM BINARY
				TO DECIMAL AND DECIMAL TO BINARY
				OTHER SYSTEMS, BINARY ARITHMETIC
				OCTAL HEXADECIMAL ETC STORING
				OF DATA IN A COMPLITER $-$ BIT BYTE
				WORD FTC CODING OF A DATA $-$ ASCI
				FTC
				PROGRAMMING LANGUAGE
				I/O STATEMENTS
				SUB PROGRAMMS
				FLEMENTS OF BASIC PROGRAMMING
				LANGUAGE
				APPLICATION TO SIMPLE PROBLEMS.
·	CONVERGENCE	10	IM	POINT-WISE AND UNIFORM
				CONVERGENCE OF SEQUENCE OF
				FUNCTIONS AND SERIES OF FUNCTIONS
				WITH SPECIAL REFERENCE TO POWER
				SERIES. STATEMENT OF WEIERSTRASS
				M-TEST FOR UNIFORM CONVERGENCE
				OF SEQUENCE OF FUNCTIONS AND OF
				SERIES OF FUNCTIONS. SIMPLE
				APPLICATIONS. BOUNDEDNESS.
				CONTINUITY, DIFFERENTIABILITY AND
				INTEGRABILITY OF THE LIMIT FUNCTION
				OF UNIFORMLY CONVERGENT
				SEQUENCE OF FUNCTIONS AND OF THE
				SUM FUNCTION OF UNIFORMLY
				CONVERGENT SERIES OF FUNCTIONS.

			DETERMINATION OF RADIUS OF
			CONVERGENCE OF POWER SERIES.
			STATEMENT OF PROPERTIES OF
			CONTINUITY OF SUM FUNCTION OF
			POWER SERIES. TERM BY TERM
			INTEGRATION & DIFFERENTIATION OF
			POWER SERIES, ETC. SIMPLE PROBLEMS
FOURIER SERIES	10	LM	FOURIER SERIES, PERIODIC FUNCTION.
			DETERMINATION OF FOURIER
			COEFFICIENTS. STATEMENT OF
			DIRICHLET'S CONDITIONS OF
			CONVERGENCE AND STATEMENT OF
			THE THEOREM ON CONVERGENCE OF
			FOURIER SINE AND COSINE SERIES.
ODE	6	LM	THIRD AND FOURTH ORDER ORDINARY
			DIFFERENTIAL EQUATION WITH
			CONSTANT COEFFICIENTS. EULER'S
			HOMOGENEOUS EQUATION
2 ND ORDER	10	LM	METHOD OF VARIATION OF
DIFFL. EQN.			PARAMETERS, METHOD OF
			UNDETERMINED COEFFICIENTS, SIMPLE
			EIGENVALUE PROBLEM
SIMULTANEOUS	5	LM	SIMULTANEOUS LINEAR DIFFERENTIAL
DIFFL. EQN			EQUATION WITH CONSTANT
			COEFFICIENTS
LAPLACE	8	LM	LAPLACE TRANSFORM AND ITS
TRANSFORM			APPLICATION TO ORDINARY
			DIFFERENTIAL EQUATION
PDE	6	LM	INTRODUCTION OF PDE, FORMATION
			OF PDE, SOLUTION OF PDE,
			LAGRANGE'S METHOD OF SOLUTION
DISCRETE	30	LM	INTEGERS, CONGRUENCE, APPLICATION
MATHEMATICS			OF CONGRUENCES, CONGUENCE
			CLASSES, RECURRENCE RELATIONS AND
			GENERATING FUNCTIONS, BOOLEAN
			ALGEBRA

SI.	Name of The TOPIC	No. Of Periods
No.		
1	Limit	03
2	Continuity	03
3	Types of Discontinuities	03
4	Differentiability of Functions	04
5	Successive Differentiation	06
6	Leibnitz's Theorem and its application	04
7	Partial Differentiation	04
8	Homogeneous Function	02
9	Euler's Theorem	05
10	Tangents & Normals	05
11	Curvature	05
12	Asymptotes	04
13	Singular Points	03
14	Tracing Of Curves	04
15	Polar Coordinates and tracing of Curves in Polar Coordinates	04
16	Rolle's Theorem	04
17	Mean Value Theorems	04
18	Taylor's Theorem with Lagrange's and Cauchy's form of Remainder	07
19	Taylor's Series	04
20	Maclaurin's Series	04
21	Maxima & Minima	04
22	Indeterminate Form	04
	TOTAL	90

Academic Calendar For 1st Semester : 2020-21

Academic Calendar For 3rd Semester : 2020-21

SI.	Name Of The TOPIC	No. Of Periods
No.		
1	Finite & Infinite Sets	02
2	Examples Of Countable & Uncountable Sets	02
3	Real Line	02
4	Bounded Sets	02
5	Suprema & Infima	02
6	Completeness Property Of R	02
7	Archimedian Property Of R	02
8	Intervals	02
9	Concept Of Cluster Points & Statement Of Bolzano-Weierstrass Theorem	03
10	Real Sequence	02
11	Bounded Sequence	02
12	Cauchy Convergence criterion for Sequences	03
13	Cauchy's Theorem on Limits	02

14	Order Preservation and Squeeze Theorem	03
15	Monotone Sequences and their convergence	03
16	Definition and Examples of Absolute and Conditional Convergence	04
17	Infinite Series	03
18	Cauchy Convergence Criterion for Series	02
19	Positive term Series	02
20	Geometric Series	02
21	Comparison Test	02
22	Covergence of p-series	02
23	Root Test	02
24	Ratio Test	02
25	Alternating Series	02
26	Leibnitz's Test (Tests Of Convergence Without Proof)	02
27	Sequences & Series of Functions	04
28	Pointwise & Uniform Convergence	03
29	M_n- Test	02
30	M-Test	02
31	Statements Of the results about uniform convergence	02
32	Differentiability & Integrability Of functions	04
33	Power Series	03
34	Radius Of Convergence	04
TOTA		83

Academic Calendar For 5th Semester : 2020-21

SI.	Name Of The Topic	No. Of Periods
No.		
1	Condition of Equilibrium of a particle and of Coplanar forces acting on a	08
	rigid body	
2	Laws Of Friction	06
3	Problems Of Equilibrium UnderForces including Friction	08
4	Centre Of Gravity	06
5	Work & Potential Energy	07
6	Velocity & Accelerationof a particle along a Curve	05
7	Radial Transverse Components (Plane Curve)	07
8	Tangential & Normal Components (space Curve)	06
9	Newton's Laws Of Motion	09
10	Simple Harmonic Motion	10
11	Simple Pendulum	06
12	Projectile Motion	08
	TOTAL	86

Academic Calendar For2ND Semester : 2020-21

SI.	Name of The TOPIC	No. Of Periods
No.		
1	INTRODUCTION OF DIFFERENTIAL EQUATION	01
2	FIRST ORDER DIFFERENTIAL EQUATION	02
3	EXACT DIFFERENTIAL EQUATION	02
4	INTEGRATING FACTORS	02
5	RULES TO FIND OUT AN INTEGRATING FACTOR	04
6	FIRST ORDER HIGHER DEGREE EQUATIONS SOLVABLE FOR X,Y,P.	04
7	METHODS FOR SOLVING HIGHER-ORDER DIFFERENTIAL EQUATION	06
8	BASIC THEORY OF LINEAR DIFFERENTIAL EQUATIONS	01
9	WRONSKIANS	02
10	PROPERTIES	02
11	SOLVING A DIFFERENTIAL EQUATION BY REDUCING ITS ORDER	07
12	LINEAR HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS	10
13	LINEAR NON-HOMOGENEOUS EQUATIONS	08
14	THE METHOD OF VARIATION OF PARAMETERS	05
15	THE CAUCHY-EULER EQUATION	08
16	SIMULTANEOUS DIFFERENTIAL EQUATION	07
17	TOTAL DIFFERENTIAL EQUATION	04
18	ORDER & DEGREE OF PARTIAL DIFFERENTIAL EQUATION	02
19	LINEAR & NON-LINEAR PARTIAL DIFFERENTIAL EQUATION	02
20	FORMATION OF FIRST ORDER PARTIAL DIFFERENTIAL EQUATION	02
21	LAGRANGE'S METHOD	03
22	CHARPIT'S METHOD	03
23	CLASSIFICATION OF SECOND ORDER PARTIAL DIFFERENTIALEQUATIONS	03
	INTO ELLIPTIC, PARABOLIC, HYPERBOLICTHROUGH ILLUSTRATIONS ONLY	

Academic Calendar For 4TH Semester : 2020-21

SI.	Name Of The TOPIC	No. Of Periods
No.		
1	Equivalence relation & Partition	02
2	functions	02
3	Composition of functions	02
4	Invertible functions	01
5	One to one correspondence and cardinality of sets	01
6	Definition & examples of groups	02
7	Examples of Abelian & Non-Abelian Groups	01
8	Cyclic groups	03

9	Complex roots of unity	01
10	Circle group	02
11	The general Linear group of symmetries	04
12	The Permutation Group Symmetry	02
13	Group of Quaternions	02
14	Subgroups	02
15	Cyclic Subgroups	02
16	Examples of subgroups including the center of a group	04
17	cosets	02
18	Index of subgroup	01
19	Lagrange's Theorem	02
20	Order of an element	01
21	Normal subgroup	02
22	Examples	02
23	Characterization	01
24	Quotient groups	04
25	Definition & Examples of a Ring	05
26	Examples of Commutative and Noncommutative Rings	02
27	Rings from number system	02
28	The Ring of Integers Modulo n	02
29	Ring of real quaternions	02
30	Rings of matrices	02
31	Polynomial Rings	02
32	The Ring of Continuous Functions	02
33	Subrings and Ideals	04
34	Integral Domain and Field	04
TOTA		75

Academic Calendar For 6th Semester : 2020-21

SI.	Name Of The Topic	No. Of Periods
No.		
1	Algorithms	06
2	Convergence	05
3	Bisection Method	05
4	False position Method	04
5	Fixed point Iteration Method	03
6	Newton's Method	03
7	Secant Method	04

8	LU Decomposition	05
9	Gauss-Jacobi Method	04
10	Gauss-Siedel Method	02
11	Lagrange Interpolation	05
12	Newton's Interpolation	03
13	Finite Difference operators	02
14	Numerical Differentiation	02
15	Trapezoidal Rule	03
16	Simpson's Rule	04
17	Euler's Method for solving ODE	04
	TOTAL	64

SI.	Name of The TOPIC	No. Of Periods
No.		
1	Limit	03
2	Continuity	03
3	Types of Discontinuities	03
4	Differentiability of Functions	04
5	Successive Differentiation	06
6	Leibnitz's Theorem and its application	04
7	Partial Differentiation	04
8	Homogeneous Function	02
9	Euler's Theorem	05
10	Tangents & Normals	05
11	Curvature	05
12	Asymptotes	04
13	Singular Points	03
14	Tracing Of Curves	04
15	Polar Coordinates and tracing of Curves in Polar Coordinates	04
16	Rolle's Theorem	04
17	Mean Value Theorems	04
18	Taylor's Theorem with Lagrange's and Cauchy's form of Remainder	07
19	Taylor's Series	04
20	Maclaurin's Series	04
21	Maxima & Minima	04
22	Indeterminate Form	04
	TOTAL	90

Academic Calendar For 1st Semester : 2021-22

Academic Calendar For 3rd Semester : 2021-22

SI.	Name Of The TOPIC	No. Of Periods
No.		
1	Finite & Infinite Sets	02
2	Examples Of Countable & Uncountable Sets	02
3	Real Line	02
4	Bounded Sets	02
5	Suprema & Infima	02
6	Completeness Property Of R	02
7	Archimedian Property Of R	02
8	Intervals	02
9	Concept Of Cluster Points & Statement Of Bolzano-Weierstrass Theorem	03
10	Real Sequence	02
11	Bounded Sequence	02
12	Cauchy Convergence criterion for Sequences	03
13	Cauchy's Theorem on Limits	02
14	Order Preservation and Squeeze Theorem	03

15	Monotone Sequences and their convergence	03
16	Definition and Examples of Absolute and Conditional Convergence	04
17	Infinite Series	03
18	Cauchy Convergence Criterion for Series	02
19	Positive term Series	02
20	Geometric Series	02
21	Comparison Test	02
22	Covergence of p-series	02
23	Root Test	02
24	Ratio Test	02
25	Alternating Series	02
26	Leibnitz's Test (Tests Of Convergence Without Proof)	02
27	Sequences & Series of Functions	04
28	Pointwise & Uniform Convergence	03
29	M_n- Test	02
30	M-Test	02
31	Statements Of the results about uniform convergence	02
32	Differentiability & Integrability Of functions	04
33	Power Series	03
34	Radius Of Convergence	04
TOTA	L	83

Academic Calendar For 5th Semester : 2021-22

SI.	Name Of The Topic	No. Of Periods
No.		
1	Condition of Equilibrium of a particle and of Coplanar forces acting on a	08
	rigid body	
2	Laws Of Friction	06
3	Problems Of Equilibrium UnderForces including Friction	08
4	Centre Of Gravity	06
5	Work & Potential Energy	07
6	Velocity & Accelerationof a particle along a Curve	05
7	Radial Transverse Components (Plane Curve)	07
8	Tangential & Normal Components (space Curve)	06
9	Newton's Laws Of Motion	09
10	Simple Harmonic Motion	10
11	Simple Pendulum	06
12	Projectile Motion	08
	TOTAL	86

Academic Calendar For2ND Semester : 2021-22

SI.	Name of The TOPIC	No. Of Periods
No.		
1	INTRODUCTION OF DIFFERENTIAL EQUATION	01
2	FIRST ORDER DIFFERENTIAL EQUATION	02
3	EXACT DIFFERENTIAL EQUATION	02
4	INTEGRATING FACTORS	02
5	RULES TO FIND OUT AN INTEGRATING FACTOR	04
6	FIRST ORDER HIGHER DEGREE EQUATIONS SOLVABLE FOR X,Y,P.	04
7	METHODS FOR SOLVING HIGHER-ORDER DIFFERENTIAL EQUATION	06
8	BASIC THEORY OF LINEAR DIFFERENTIAL EQUATIONS	01
9	WRONSKIANS	02
10	PROPERTIES	02
11	SOLVING A DIFFERENTIAL EQUATION BY REDUCING ITS ORDER	07
12	LINEAR HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS	10
13	LINEAR NON-HOMOGENEOUS EQUATIONS	08
14	THE METHOD OF VARIATION OF PARAMETERS	05
15	THE CAUCHY-EULER EQUATION	08
16	SIMULTANEOUS DIFFERENTIAL EQUATION	07
17	TOTAL DIFFERENTIAL EQUATION	04
18	ORDER & DEGREE OF PARTIAL DIFFERENTIAL EQUATION	02
19	LINEAR & NON-LINEAR PARTIAL DIFFERENTIAL EQUATION	02
20	FORMATION OF FIRST ORDER PARTIAL DIFFERENTIAL EQUATION	02
21	LAGRANGE'S METHOD	03
22	CHARPIT'S METHOD	03
23	CLASSIFICATION OF SECOND ORDER PARTIAL DIFFERENTIALEQUATIONS	03
	INTO ELLIPTIC, PARABOLIC, HYPERBOLICTHROUGH ILLUSTRATIONS ONLY	

Academic Calendar For 4TH Semester : 2021-22

SI.	Name Of The TOPIC	No. Of Periods
No.		
1	Equivalence relation & Partition	02
2	functions	02
3	Composition of functions	02
4	Invertible functions	01
5	One to one correspondence and cardinality of sets	01
6	Definition & examples of groups	02
7	Examples of Abelian & Non-Abelian Groups	01
8	Cyclic groups	03

9	Complex roots of unity	01
10	Circle group	02
11	The general Linear group of symmetries	04
12	The Permutation Group Symmetry	02
13	Group of Quaternions	02
14	Subgroups	02
15	Cyclic Subgroups	02
16	Examples of subgroups including the center of a group	04
17	cosets	02
18	Index of subgroup	01
19	Lagrange's Theorem	02
20	Order of an element	01
21	Normal subgroup	02
22	Examples	02
23	Characterization	01
24	Quotient groups	04
25	Definition & Examples of a Ring	05
26	Examples of Commutative and Noncommutative Rings	02
27	Rings from number system	02
28	The Ring of Integers Modulo n	02
29	Ring of real quaternions	02
30	Rings of matrices	02
31	Polynomial Rings	02
32	The Ring of Continuous Functions	02
33	Subrings and Ideals	04
34	Integral Domain and Field	04
TOTA		75

Academic Calendar For 6th Semester : 2021-22

SI.	Name Of The Topic	No. Of Periods
No.		
1	Algorithms	06
2	Convergence	05
3	Bisection Method	05
4	False position Method	04
5	Fixed point Iteration Method	03
6	Newton's Method	03
7	Secant Method	04

8	LU Decomposition	05
9	Gauss-Jacobi Method	04
10	Gauss-Siedel Method	02
11	Lagrange Interpolation	05
12	Newton's Interpolation	03
13	Finite Difference operators	02
14	Numerical Differentiation	02
15	Trapezoidal Rule	03
16	Simpson's Rule	04
17	Euler's Method for solving ODE	04
	TOTAL	64