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Candidates are required to give their answers in their own words as far as practicable.
All symbols are of usual significance.
Answer Question No. 1 and any five from the rest
L. Answer any five questions from the following: 2x5=10
(a) Evaluate the right hand and left hand limits of the function f(x)= ,xﬂ at the point
x = 0. Examine whether the function has a limit at 0.
. . . s . x—1
(b) Find the points of discontinuity of the function f(x)=— .
(x*=D(x-Dx
(c) Verify Rolle’s theorem for the function f(x)=x>—-5x+10 on [2, 3].
(d) Investigate the extremum for the function f(x)=2x>-15x? +42x+10.
ina —sin
(e) Show that Sll——I[i:cotﬁ, where 0 < o <6<,B<—f)l.
cosa —cos ff =
8 4 yl/3
(f) Show that the function f(x)= TR is homogeneous and find its degree.
x"+y
(8) Find the points on the curve y = x* +3x + 4, where the tangents pass through the
origin.
(h) If y =sin(m sin"' x), show that ¢ —xz)yz —xy +m’y=0.
2. (a) Show that the limit that lirrasin% does not exist. 2
X—>
(b) If two functions /" and g are continuous at a point ¢, then show that f + g is also 3
continuous at c.
(¢) Discuss the continuity of the function f(x)=|x-3| at x=3 and find '(3), if 2+1

exists.
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3. (a) Ifa function f is differentiable at some point ¢ in its domain, then prove that it is 3
also continuous at ¢. Give a suitable example to show that the converse of the
above result is not true.

3 3 > -
aX 4y 7 ou on .

= fie , then prove that x— + y— =sin2u . 3

(b) If u=tan P prove E y Yy
(c) Find the equation of the normal to the curve x* — y* = 4” at the point (a2, a). 2
4. (a) If yVm 4y —2x prove that (x* —=1)y,,, + (2n+xy, ., +(n* — m*)y, =0. 4
(b) State and prove Euler’s theorem on homogeneous functions. 4
5. (a) Find the radius of curvature at (%, 211—) of the curve Vx + J; =1. 3
(b) State and prove Lagrange’s mean value theorem. Write the geometrical 4+1

interpretation of this theorem.

6. (a) Find the Taylor’s series expansion of the function f(x)=sinx, x € R. 5
2
(b) Determine the asymptotes of the curve x = 221 T y= a +2t) . 3
1m - t
7. (a) Verify Rolle’s theorem for the function f(x)= x(x + 3)e_x/ 2 in[- 3, 0]. 4
(b) If f: R — R is a differentiable function such that f"(x)=0 everywhere then 4
show that f(x) is a constant function on R.
%
8. (@ If f(h)=/f(0)+hf'(0)+ yf"(ﬁh), 0<f<1, find & when h=1 and 3
S =0-x".
(b) Discuss maxima and minima of the function f(x)= (%)x, x >0, if there be any. 5
9. (@) Ifu= f(x,y), x=rcoso, y =rsind , then prove that 6
(aujz ouY’ (au)z I (au )
- ;1 == =| — Fremmn] e
ox dy or) r*\o6
xy(x* = y?) :
(b) If f(x,y) =—ET- for (x, y)#(0,0) and f(0,0)=0 then find £,(0,0) 1+1
x“+y
and £ (0, 0).
x
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