.Sc. Programme 5th Semester Examination, 2022-23

MTMGDSE01T-MATHEMATICS (DSE1)

Full Marks: 50
Time Allotted: 2 Hours

> The figures in the margin indicate full marks.
> Candidates should answer in their own words and adhere to the word limit as practicable.
> All symbols are of usual significance.

Answer Question No. 1 and any five from the rest

1. Answer any five questions from the following:
(a) Is the set of vectors $(1,0,0),(0,1,0)$ and $(0,0,1)$ are linearly dependent? Justify your answer.
(b) What is the geometric meaning of the given transformation

$$
\binom{X}{Y}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}
$$

(c) Is any straight line passing through $(0,0,0)$ in \mathbb{R}^{3} a sub space of \mathbb{R}^{3} ? Give reason.
(d) Write down the matrix form of the system of equations

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=d_{1} \\
& a_{2} x+b_{2} y+c_{2} z=d_{2} \\
& a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{aligned}
$$

(e) Is the vectors $(1,2)$ and $(-1,2)$ and linearly independent in \mathbb{R}^{3} ? Justify.
(f) Find the inverse of the matrix $\left(\begin{array}{cc}2 & -1 \\ 4 & 3\end{array}\right)$.
(g) For what values of k the three vectors $(1,2,2),(k, 1,2)$ and $(2,2,1)$ are linearly independent?
(h) Write the standard basis of \mathbb{R}^{2} and \mathbb{R}^{3}.
(i) Prove that $S=\left\{(x, y, z) \in \mathbb{R}^{3} / x+y+z=0\right\}$ is a subspace of \mathbb{R}^{3}.
2. (a) If u and v are linearly independent vectors in a vector space V then show that so are $u+v$ and $u-v$.
(b) Examine whether the set of vectors are linearly independent in \mathbb{R}^{3}.

$$
\{(1,2,3),(2,3,1),(3,1,2)\} .
$$

(c) Define Dilation and Rotation.
3. (a) Let A be a singular matrix. Is 0 is an eigen value of A ? Justify your answer.
(b) If λ be an eigen value of a non-singular matrix A, then λ^{-1} is an eigen value of A^{-1}.
4. (a) Define Eigen space and invariant space with examples.
(b) Show that the matrix $A=\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)$ is not diagonalisable.
5. (a) Define a basis of a vector space. Do the vectors $(1,0,0),(0,1,0)$ and $(1,2,1)$ are form a basis of \mathbb{R}^{3} ? Justify.
(b) Find the eigen values and corresponding eigen vectors of the following real matrix.

$$
\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

6. (a) Prove or disprove: The set $\left\{(x, y, z) \in \mathbb{R}^{3} \mid a x+b y+c z=0\right.$ and $\left.a^{2}+b^{2}+c^{2} \neq 0\right\}$ is a subspace of \mathbb{R}^{3}.
(b) Use elementary row operations on A to obtain A^{-1} where

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
4 & 3 & 0 \\
6 & 4 & 1
\end{array}\right]
$$

7. (a) Let $A=\left[\begin{array}{ccc}3 & 2 & -6 \\ 0 & -1 & 4 \\ 5 & -2 & 0\end{array}\right]$. Verify that $A+A^{\prime}$ is symmetric and $A-A^{\prime}$ is skewsymmetric and hence express A as the sum of a symmetric and skew-symmetric matrix.
(b) If $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0\end{array}\right]$, then verify that A satisfies its own characteristic equation. Hence find A^{-1} and A^{9}.
8. (a) Find a basis of \mathbb{R}^{3} containing the vectors $(1,1,0)$ and $(1,1,1)$.
(b) Let A, B, C be three square matrices such that $A \neq O$ and $A B=A C$, where O is the null matrix. Does it imply $B=C$? Justify your answer.
(c) Define dimension of a finite dimensional vector space V over the field F. Give example.
9. (a) Find the 3 by 3 matrix representations of the following transformations.
(i) projection of any point on the $x-y$ plane.
(ii) reflection of any point through the $x-y$ plane.
(b) Determine the rank of $A=\left(\begin{array}{ccc}x & 1 & 0 \\ 3 & x-2 & 1 \\ 3(x+1) & 0 & x+1\end{array}\right)$, for different values of x.
10.(a) Solve by matrix method:

$$
\begin{aligned}
& x+y+z=4 \\
& 2 x-y+3 z=1 \\
& 3 x+2 y-z=1
\end{aligned}
$$

(b) Reduce the matrix to fully reduced normal form

$$
\left(\begin{array}{llll}
1 & 0 & 2 & 3 \\
2 & 0 & 4 & 6 \\
3 & 0 & 7 & 2
\end{array}\right) .
$$

\qquad

