WEST BENGAL STATE UNIVERSITY
B.Sc. Programme 6th Semester Examination, 2021

MTMGDSE03T-MATHEMATICS (DSE2)
 Numerical Methods

Time Allotted: 2 Hours
Full Marks: 50

> The figures in the margin indicate full marks.
> Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

Answer Question No. 1 and any five from the rest

1. Answer any five questions from the following:
(a) Construct a linear interpolation for $f(x)$ with $f(1)=3$ and $f(2)=-5$.
(b) Compute $\int_{0}^{4} 2 x^{3} d x$, by Simpson's $\frac{1}{3}$ formula and comment on the result.
(c) Derive an iteration formula for computing $\sqrt[3]{a}$, using Newton Raphson method.
(d) What is the condition of convergency of Gauss-Jacobi iteration to solve the system of n linear equations? Is this condition both necessary and sufficient?
(e) Show that the equation $x^{2}+\ln x=0$ has exactly one root in the interval $\left[\frac{1}{3}, 1\right]$.
(f) If $0.66 \mathcal{T}$ be an approximate value of $\frac{2}{3}$, find the percentage error.
(g) What do you mean by Numerical Differentiation?
(h) Show that $\Delta^{2} \cos 2 x=4 \cos 2 x$ where interval of differencing is $\frac{\pi}{2}$.
(i) Define the terms absolute and relative errors.
2. Explain the Newton-Raphson method for computing a simple real root of an $4+1+1+2$ equation $f(x)=0$. When does the method fail? Can we apply this method to the equation $x^{2}-x+\frac{1}{4}=0$? Justify your answer.
3. (a) In order to find the root of $x^{3}-x-1=0$, near $x=1$ which of the following iteration functions give convergent sequences:
(i) $x=\frac{x+1}{x^{2}}$
(ii) $x=\sqrt{\frac{x+1}{x}}$
(b) Apply the method of bisection to find a real root up to two significant digits of the equation $x^{3}-3 x-5=0$.
4. (a) Use Lagrange's interpolation to find the value of $f(x)$ for $x=0.4$ using the table.

x	0.3	0.5	0.6
$f(x)$	0.61	$0 . ?$	0.72

(b) Find $\Delta^{4} f(x)$, where $f(x)=(3 x+2)(x-2)(x+1)(5 x-1)$ and the interval of differencing is unity.
5. What is interpolation? Deduce Newton's forward difference interpolation formula without error term.
6. (a) Given the following table:

x	0	5	10	15	20
$f(x)$	1.0	1.6	3.3	8.2	15.4

Construct the difference table and compute $f^{\prime}(20)$.
(b) If $f(x)=a x$, show that $\left(E+E^{-1}\right) f(x)=2 f(x)$.
7. (a) Calculate $\int_{1}^{2}\left(x+\frac{1}{x}\right) d x$ up to four significant figures by Simpson's $\frac{1}{3}$ rule taking 4 intervals.
(b) Obtain trapezoidal rule for numerical integration without the error term.
8. Solve the system of equations by LU decomposition method:

$$
3 x+4 y+2 z=15,5 x+2 y+z=18,2 x+3 y+2 z=10
$$

9. Deduce Lagrange's interpolation formula and also prove that Lagrangian functions are invariant under linear transformation.
10.(a) For any positive integer k, show that

$$
\nabla^{k} y_{n}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} y_{n-i}
$$

∇ being the backward difference operator.
(b) What do you mean by 'round off' errors in numerical data? Show how these errors are propagated in a difference table.
N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

