CHEMICAL KINETICS ($1^{\text {ST }}$ SEMESTER)

A. SHORT QUESTION

1. The unit of rate constant of a reaction is $\mathrm{Mol}^{-1} \mathrm{~L} . \mathrm{S}^{-1}$. What is the order of the reaction? (1)
2. What happens to the half-life period for a first order reaction, if the initial concentration of the reactants is increased? (1)
3. Give an example of a zero-order reaction. (1)
4. A reaction is first order with respect to the reactant A and second order w.r.t reactant B in the reactant, $\mathrm{A}+\mathrm{B} \rightarrow$ Product
(i) Write the differential rate equation
(ii) How is the rate of the reaction affected on increasing the concentration of B by 2 times? (2)
5. A certain first order reaction is half completed in 46 mins. Calculate the rate constant and also time taken for 75% completion of the reaction . (3)
6. Show that in case of a first order reaction, the time taken for completion of 99% reaction is ten times the time required for half change of the reaction. (3)
7. The half-life for radioactive decay of 14_{C} is 5730 years. An archaeological artifact containing wood had only 80% of the $14 C$ found in a living tree. Estimate the age of the sample . (3)
8. Derive integrated rate equation for the first order reaction . (3)
9. The rate of a particular reaction doubles when the temperature changes from 300 K to 310 K . calculate the energy of activation of the reaction [given, $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$] (3 marks)
10. Show that the half-life period of a first order reaction is independent of initial concentration of reacting species. (2)
11. Rate constant of a first order reaction $0.693 \mathrm{~min}^{-1}$. Calculate the percentage of the reactant remaining at the end of 60 minutes . (3)
12. Show that half-life period for a zero order reaction is directly proportional to initial concentration. (2)
13. For the reaction $2 A+B+2 C \rightarrow D+2 E$, the rate law is: rate $=k[A]^{2}[B]^{1}[C]^{1}$ Which of the following statements is false:
a. the reaction is second order in [A]
b. the reaction is first order in $[\mathrm{B}]$
c. the reaction is second order in [C]
d. the reaction is 4th order overall
14. For the reaction $1 A+2 B+1 C \rightarrow 2 D+1 E$, the rate law is: rate $=k[B]^{2}[C]^{1}$

Which of the following statements is false:
a. the reaction is first order in $[\mathrm{A}]$
b. the reaction is second order in [B]
c. the reaction is first order in [C]
d. the reaction is third order overall
15. For the rate law Rate $=k[\mathrm{~A}]^{0.5}[\mathrm{~B}]$, the partial order with respect to A is \qquad , the partial order with respect to B
is \qquad , and the total order is \qquad .
a. $1 / 2 ; 0 ; 1 / 2$
b. $1 / 2 ; 1 ; 1$
c. $1 / 2 ; 1 ; 3 / 2$
d. $1 / 2$
e. The orders cannot be determined without a chemical reaction.
16. For the rate law Rate $=k[\mathrm{~A}][\mathrm{B}]^{3 / 2}$, the order with respect to A is \qquad , the order with respect to B is
\qquad , and the overall reaction order is \qquad .
a. $0 ; 3 / 2 ; 3 / 2$
b. $1 ; 3 / 2 ; 1$
c. $1 ; 3 / 2 ; 5 / 2$
d. $1 ; 3 / 2 ; 7 / 2$
e. The orders cannot be determined without a chemical reaction
17. The reaction $\mathrm{A}+2 \mathrm{~B} \rightarrow \mathrm{C}$
is first order in B and A. The overall order of the reaction is \qquad
a. first.
d. zero.
b. second.
e. fourth.
c. third.
18. The first-order reaction $\mathrm{A} \rightarrow \mathrm{B}$, has $k=8.00 \mathrm{~s}^{-1}$. If $[\mathrm{A}]_{0}=0.500 \mathrm{M}$, how long will it take $[\mathrm{A}]=0 . .200 \mathrm{M}$?
a. 0.115 s
b. 0.100 s
d. 0.244 s .
e. 0.488 s
c. 8.18 s
19. The first-order reaction $\mathrm{A} \rightarrow \mathrm{B}$, has $k=5.67 \mathrm{~s}^{-1}$. If $[\mathrm{A}]_{0}=0.500 \mathrm{M}$, how long will it take $[\mathrm{A}]=0.124 \mathrm{M}$?
a. 0.122 s
b. 0.100 s
c. 8.18 s
d. 0.244 s
e. 0.488 s
20. A reaction is first order in A . If the rate constant of the reaction is $6.00 \cdot 10^{-3} \mathrm{~s}^{-1}$, what is the half-life $\left(t_{1 / 2}\right)$ of the reaction?
a. $4.98^{\times} 10^{-3} \mathrm{~s}$
b. 200 s
c. $3.45 \times 10^{-3} \mathrm{~s}$
d. 115 s
e. $1.73 \times 10^{-3} \mathrm{~s}$
21. A reaction is first order in A . If the rate constant of the reaction is $3.45 \times 10^{-3} \mathrm{~s}^{-1}$, what is the half-life $\left(t_{1 / 2}\right)$ of the reaction?
a. $4.98 \times 10^{-3} \mathrm{~s}$
b. 201 s
c. $3.45 \times 10^{-3} \mathrm{~s}$
d. 100 s
e. $1.73 \times 10^{-3} \mathrm{~s}$
22. The half-life $\left(t_{1 / 2}\right)$ of a first-order reaction is 0.100 s . What is the rate constant?
a. $6.93 \mathrm{~s}^{-1}$
b. $0.693 \mathrm{~s}^{-1}$
c. $0.0693 \mathrm{~s}^{-1}$
d. $0.144 \mathrm{~s}^{-1}$
e. $3.01 \mathrm{~s}^{-1}$
23. The half-life $\left(t_{1 / 2}\right)$ of a first-order reaction is 0.950 s . What is the rate constant?
a. $6.93 \mathrm{~s}^{-1}$
b. $0.729 \mathrm{~s}^{-1}$
c. $0.0693 \mathrm{~s}^{-1}$
d. $0.144 \mathrm{~s}^{-1}$
e. $3.01 \mathrm{~s}^{-1}$
24. What percentage of a material will persist after 60 minutes if it's half life is 30 minutes?
a. 50%
b. 33%
c. 25%
d. 12.5%
e. none of the above
25. What percentage of a material will persist after 80 minutes if it's half life is 20 minutes?
a. 50%
b. 33%
c. 25%
d. 12.5%
e. 6.25%
26. rate $=k[\mathrm{~A}]^{2}$

For the reaction for which rate law is given above, a plot of which of the following is a straight line?
a. $1 /[A]$ versus time
b. [A] versus $1 /$ time
c. [A] versus time
d. $\ln [A]$ versus time
e. $\ln [A]$ versus $1 /$ time
27. Which is the label for k, the rate constant?
a. $\mathrm{mol}^{2} \mathrm{~L}^{-2} \mathrm{sec}^{-1}$
b. $\mathrm{L} \mathrm{mol}^{-1} \mathrm{sec}^{-1}$
c. $\mathrm{L}^{2} \mathrm{~mol}^{-2} \mathrm{sec}^{-1}$
d. $\mathrm{L}^{2} \mathrm{sec} \mathrm{mol}^{-1}$
e. $\mathrm{L}^{2} \mathrm{sec} \mathrm{mol}^{-2}$
28. When [B] decreases 0.4 M , what will be the value of $[\mathrm{A}]$?
a. 0.8 M
b. 1.6 M
c. 2.8 M
d. 3.4 M
e. 3.6 M
29. The first order decomposition of some radioactive isotope is 3 days. Approximately what percentage of the original substance will have decayed after 12 days have passed?
a. 94%
b. 88%
c. 50%
d. 25%
e. 6%
30. The values for the change in enthalpy, $\Delta \mathrm{H}$, and the activation energy, Ea, for a given reaction are known. The value of Ea for the reverse reaction equals
a. Ea for the forward reaction.
b. $-(\mathrm{Ea})$ for the forward reaction.
c. the sum of $-(\Delta H)$ and Ea
d. the sum of Ea and ΔH
e. the difference between $\Delta \mathrm{H}$ and Ea
31. For a reaction that is first order with respect to [D] and second order with respect to [E], which of the following will result in no change to the overall reaction rate.
a. Doubling [D] and halving [E]
b. Doubling [E] and halving [D]
c. Doubling [D] and Doubling [E]
d. Increasing [D] by a factor of four and halving [E]
e. Increasing [D] by a factor of four and dividing [E] by a factor of four.
32. For the rate law shown below, where the rate is measured in units of $\mathrm{M} \mathrm{s}^{-1}$ and the concentrations of X and Y are measured in M , which of the following statements is true? Rate $=\mathrm{k}[\mathrm{X}]^{2}[\mathrm{Y}]$
I. the units of $k=M^{2} \mathrm{~s}^{-1}$
II. doubling the concentration of y while keeping all other conditions constant will not affect the rate.
III. The reaction can be described as third-order.
a. I only
b. III only
c. I and II only
d. II and III only
e. I, II, and III
33. Which of the following plots will yield a straight line for a first order reaction where the slope $=-k$?
a. $\ln [\mathrm{A}]$ versus time
b. [A] versus rate
c. 1/ $[A]$ versus time
d. time versus $1 /[A]$
e. $\ln k$ versus time
34. If tripling the concentration of a single reactant R in a multi-reactant reaction (while leaving all other conditions unchanged) leads to a nine-fold increase in rate, it can be deduced
a. that the complete rate law is Rate $=k[R]$
b. that the complete rate law is Rate $=\mathrm{k}[\mathrm{R}]^{2}$
c. that the complete rate law is Rate $=k[R]^{3}$
d. that the complete rate law is Rate $=k[R]^{9}$

e. only that the order with respect to $[R]$ is 2

35. If 75% of a sample of pure ${ }^{3}{ }_{1} \mathrm{H}$ decays in 24.6 years, what is the half- life of $3{ }_{1} \mathrm{H}$
a. 24.6 years
b. 18.4 years
c. 12.3 years
d. 6.15 years
e. 3.07 years
36. If the half-life of a reaction is independent of concentration, what is the order of the reaction?
a. zero
b. first
c. second
d. half-life is unrelated to the order of the reaction
e. unable to be determined without knowing starting concentrations
37. A particular nuclear decay has a rate constant of 0.00346
Min^{-1} What is the half-life?
a. 3.3 hours
b. 1.6 hours
c. 0.0012 min
d. 0.0024 min e. 0.0050 min
38. After 44 minutes, a sample of ${ }^{44}{ }_{19} \mathrm{~K}$ is found to have
decayed to 25 percent of the original amount present.
What is the half-life of ${ }_{19}{ }_{19} \mathrm{~K}$?
a. 11 minutes
b. 22 minutes
c. 44 minutes
d. 66 minutes
e. 88 minutes
39. For a first order reaction that has a half-life of 69 s at $80^{\circ} \mathrm{C}$, the value of the rate constant, k , is closest to?
a. $0.01 \mathrm{~s}^{-1}$
b. $0.1 \mathrm{~s}^{-1}$
c. $1 \mathrm{~s}^{-1}$
d. $10 \mathrm{~s}^{-1}$
e. $100 \mathrm{~s}^{-1}$
40. Which of the following is true of all catalysts?
a. They are used up in chemical reactions
b. They are always transition metals
c. They do not take part in chemical reactions.
d. They work by increasing the activation energy of a reaction.
e. They are present at the beginning of a a reaction and are unchanged at the end.
